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Abstract. We develop a practical, distributed algorithm to detect events, iden-
tify measurement errors, and infer missing readings in ecological applications of
wireless sensor networks. To address issues of non-stationarity in environmental
data streams, each sensor-processor learns statistical distributions of differences
between its readings and those of its neighbors, as well as between its current
and previous measurements. Scalar physical quantities such as air temperature,
soil moisture, and light flux naturally display a large degree of spatiotemporal co-
herence, which gives a spectrum of fluctuations between adjacent or consecutive
measurements with small variances. This feature permits stable estimation over
a small state space. The resulting probability distributions of differences, esti-
mated online in real time, are then used in statistical significance tests to identify
rare events. Utilizing the spatio-temporal distributed nature of the measurements
across the network, these events are classified as single mode failures - usually
corresponding to measurement errors at a single sensor - or common mode events.
The event structure also allows the network to automatically attribute potential
measurement errors to specific sensors and to correct them in real time via a
combination of current measurements at neighboring nodes and the statistics of
differences between them. Compared to methods that use Bayesian classifica-
tion of raw data streams at each sensor, this algorithm is more storage-efficient,
learns faster, and is more robust in the face of non-stationary phenomena. Field
results from a wireless sensor network (Sensor Web) deployed at Sevilleta Na-
tional Wildlife Refuge are presented.

1 Introduction

Wireless sensor networks consist of multiple sensor-processor nodes that communicate
with each other using radio frequencies. Sensor nodes, at present and in the envisioned
future, are simple devices that operate within limitations in local memory storage and
processing. These constraints, although by no means fundamental, are often the result
of the practical considerations of producing devices that are inexpensive, small, and
autonomous. In addition, sensor operations, and their communication in particular, are
also limited by battery capacity or by the ability to harvest power, e.g. through solar
panels.
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Networks of distributed sensors are a promising technology because they can sense
environments—natural and human made—over an unprecedented range of spatial and
temporal scales [1, 2]. The large number of nodes required to cover large areas, over
long times, places practical constraints on their individual cost. The drive for low-cost
sensors and the need for unattended operation, frequently in harsh environments, re-
quires simple and robust devices. Even the most robust devices, however, are subject
to operational faults. Under these circumstances it is crucial that isolated errors in in-
dividual components do not jeopardize the operation of the whole network. Thus, an
important issue for this emerging technology is data quality assurance and robustness
of operation under point failures [3, 4, 5].

A general approach for robustness to point failures is to create partial functional re-
dundancy among nodes in a sensor network. In some distributed sensor applications this
emerges naturally because neighboring nodes measure local environments that are tem-
porally and/or spatially correlated [6, 7]. Then, measurements at adjacent sensors, and
at the same sensor over time, although potentially stochastic and non-stationary, display
significant amounts of mutual information. Hence data quality can be assured through
state co-inference between multiple, partially redundant and correlated readings from
neighboring nodes, or from the same node at consecutive times [8, 9].

This paper presents a practical, distributed algorithm for detecting measurement
anomalies - corresponding to both point failures and common mode events - and for
estimating erroneous or missing data in ecological applications of wireless sensor net-
works. The algorithm has been designed for ecological sensing at the Sevilleta Long
Term Ecological Research (LTER) site by a Sensor Web developed at NASA JPL [10,2,
11]. Because it is designed to work under current technological constraints on memory
and processing, the algorithm is intentionally simple and easy to implement. Process-
ing can be performed locally on each node and requires only communication between
proximal sensors. Such local, distributed algorithms are desirable for wireless sensor
networks, where minimizing the amount of wireless communication is a necessary op-
erational constraint [12].

The remainder of the paper is organized as follows. First, we describe related work
on ecological applications of distributed sensor networks, and associated requirements
for autonomous operation with emphasis on sensor measurement error detection and
correction. We review related approaches in other contexts that use the distributed na-
ture of the network for practical state co-inference, learning, and quality assurance and
the performance and implementation requirements of direct Bayesian classifiers. Next,
we describe the characteristics of the method, which performs automatic inference and
prediction at a given sensor based on the distributions of differences of its measure-
ments in time and in space relative to its neighbors. Finally we give several illustrations
of the method’s application to real data streams from a Sensor Web deployed at the
Sevilleta LTER site, summarize our results, and discuss the outlook for future work.

2 Related Work

Ecological and habitat monitoring are natural applications for wireless sensor networks
since the data often must be collected from remote areas that have little or no
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communication infrastructure and from sensing systems that are often distributed over
large geographic areas. Among other advances, wireless sensor networks permit better
sensor placement, unhindered by wires, and may use on-board computational power to
processing running statistics, perform hypothesis testing and even operate the experi-
ments themselves [8, 13].

Present deployments are still far from fulfilling this promise, but have been invalu-
able in providing experience and highlighting the difficulties that arise from measur-
ing data streams in the physical world [14, 15, 16]. Most of these problems arise from
sensors and networks operating unattended in harsh, real-world conditions, with inade-
quate error identification and correction capabilities, and without sufficient algorithms
to automatically quantify and actively reduce uncertainty [8, 13].

Several algorithms have recently been proposed that utilize statistical models to se-
lectively acquire and summarize data in distributed sensor networks [17, 18]. Because
of common climatic drivers, environmental signals at neighboring sensors are usually
spatially and temporally correlated. Some methods explicitly explore the correlated na-
ture of raw signals to reconstruct missing or erroneous readings [19]. Environmental
data streams pose the additional challenge that signals are non-stationary, driven by di-
urnal and seasonal cycles, and by climatic events that never quite repeat. These features
are typical of other sensing problems measuring physical and/or social environments.
Here we propose an approach based on difference techniques, similar to those found
in image [20] and signal processing [21], to factor out common drivers and capture
the statistics of correlations between neighboring sensors. We show that this approach,
complemented with the use of statistical tests to detect anomalous measurements, nat-
urally leads to the identification of events with different structure, that can correspond
to point sensor failures, or common mode events. The common mode anomalies may
be erroneous or result from real spatio-temporally coherent events. In this way, missing
or erroneous measurements at a sensor can also be automatically inferred via the joint
consideration of neighboring readings and learned difference probability distributions.

Because of these general properties of environmental data streams, the straightfor-
ward application of standard statistical learning methods to environmental data streams
must be performed with care. For example, Bayesian classifier methods [22] are a pow-
erful way to perform sequential estimation, and are therefore a natural formalism for
devising learning algorithms in distributed sensor networks. However, the direct imple-
mentation of such methods tends to run into the practical limitations of these simple
devices. A recent proposal for context-aware sensors based on Bayesian classifiers uses
statistical correlations between sensor readings to detect outliers and approximate miss-
ing readings [23]. We briefly review this method in the next section in order to provide
context to the conceptual differences of our approach.

3 Bayesian Classifier Method

Assume that sensor measurements take values in the interval [l,u], and let R= {r1, ...,rm}
be a disjoint cover of this interval. Each subinterval in R is considered a discrete class,
with average precision (u− l)/m. Each node has its own classifier, consisting of the state
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of that node’s previous reading, h, and of the measurements from two (indistinguishable)
nearby sensors, denoted as n ∈ {(ri,r j) ∈ R × R, i ≤ j}.

By Bayes’ theorem, the conditional probability of a reading ri, given the previous
value h at that sensor and readings n from two nearby neighbors, is

P(ri|h,n) =
P(h,n|ri)P(ri)

P(h,n)
. (1)

In addition, to reduce the state space for inference, it is assumed in [23] that the neigh-
bor’s spatial measurements and the temporal information contained in the previous
reading are conditionally independent,1 given the reading of the sensor at the present
time, yielding the “Naive Bayes” classifier

P(ri|h,n) =
P(h|ri)P(n|ri)P(ri)

P(h)P(n)
. (2)

The output of the classifier is inferred using the method of maximum a posteriori
(MAP) estimation [24], and is given by

argmax
ri∈R

P(ri|h,n) = argmax
ri∈R

P(h|ri)P(n|ri)P(ri)
P(h)P(n)

= argmax
ri∈R

P(h|ri)P(n|ri)P(ri) , (3)

where the denominator can be omitted from the optimization because it does not depend
on ri.

This method is exhaustive and powerful in classifying all possible states of the sys-
tem and learning their likelihood, but runs into practical implementation problems. To
see this, consider that each node must learn the parameters of its classifier online. To
learn P(ri), a node keeps a count of the number of times ri occurs for each of m pos-
sible values. To learn P(h|ri), a node also keeps a count of the number of times h and
ri occur together for each of m2 possible combinations. Similarly, to estimate P(n|ri),
a node must keep a tally of the number of instances n and ri occur together, for each
of (m3 + m2)/2 possible states. Finally, to compute probabilities for outlier detection,
a node learns P(n) online by keeping a count of the number of times n occurs for
each of (m2 + m)/2 values. P(h) is given by P(ri) where ri = h and a node must also
keep a count of the total number of instances observed. Thus the total number of states
stored is m3/2+2m2+3m/2+1. This expression was obtained by considering the mea-
surements of a node relative to two neighbors. For k > 2 neighbors, the corresponding
expression scales with leading exponent k + 1.

The size of the state space required for inference is important for two reasons. First,
nodes typically have limited storage capacity, which in turn limits precision. Consider
the example of covering a range of 100 degrees with 1 degree precision. Then a classifier
would have to store 520,151 counts, or roughly 2 megabytes. Secondly, the amount of
learning data required to populate the state space is prohibitive in many cases. In the
same example at least 5 million learning instances would be necessary for estimation
(taken here to be roughly an order of magnitude greater than the size of the state space).

1 We note that these assumptions do not apply to ecological environmental data under most
circumstances.



Separating the Wheat from the Chaff 227

To put this into perspective, consider that a node taking a reading every five minutes
(e.g., [2]) would require about 47 years to populate its state space.

The issue of learning is even more critical in cases involving non-stationary phe-
nomena because the learning rate cannot be slower than the rate at which parameters
evolve. For example, in the case of outdoor air temperature, conditions change through-
out the day as the sun rises, moves across the sky (e.g., placing sensors in and out of
shadows), and sets. In addition, conditions also change with season and from year to
year, such that combinations of data that occur frequently during a hot summer appear
rarely during a cold winter, and will differ to the next summer. Thus an important dis-
criminating criterion for any data quality assurance method is that it must operate on a
timescale commensurate with that of any non-stationary phenomena being measured.
For ecological sensing this time scale is typically less than a few hours.

4 A Method Based on the Statistics of Differences Between Sensor
Measurements

We now propose a method for performing automatic event detection and data quality
assurance, in which each node learns statistical distributions of differences between its
readings and those of its neighbor’s, and also between its own measurements at dif-
ferent times. Such distributions, together with current measurements are then used to
identify anomalous measurements and to infer missing values. The inference of statis-
tical distributions for measurement differences helps bypass issues of non-stationarity
in environmental data streams, and leads, in general, to smaller ranges of statistical
variables and better sampling for smaller datasets.

The crucial assumption required for the method to work is that the observed phenom-
ena are spatiotemporally coherent, so that the measurements at neighboring sensors,
and at the same sensor over time, display a large amount of mutual information. This
is true of ecological applications, where typical node-to-node spacings are in the range
of 100-200 meters or less. Moreover, environmental variables such as air temperature,
relative humidity, light flux, soil temperature, and soil moisture display a substantial
amount of temporal correlation as a result of common climatic drivers. It is assumed
below that measurements at different sensors are performed at time intervals which are
much smaller than the temporal correlation time of acquired signals, which we mea-
sured to be of order 1 hour. This is a characteristic of Sensor Web measurements, which
are synchronous across the entire network and measurements can be taken every few
minutes. An additional final assumption of the method is that the probability density of
the differences has a peak near the mean and tails that taper as differences deviate away
from it (e.g., see Fig. 1). That is, the method assumes that the probability of observing
a difference decreases with the distance between that difference and the mean of all ob-
served differences. This is not a strong assumption and could easily be relaxed in more
complex circumstances if judged necessary.

Under these circumstances spatial and temporal measurement differences display
a (much more) stationary distribution when compared to individual sensor readings.
This permits more stable estimation of the statistics of differences over a much
smaller state space. The estimation of differences between sensors placed at different
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micro-environments, or between those and experimental controls can also capture quan-
tities of direct ecological interest [13], e.g. by comparing control plots to treatments.

To set the context and notation for the method presented below consider then a node
with k neighbors. Let φ be the node’s reading, φ0 be its previous measurement, and
φi, i = 1, ...,k, be the readings of its neighbors. At each new measurement the node
computes the difference between its current reading and its previous measurement and
between its reading and each of its neighbor’s di = φ −φi, i = 0, ...,k. Given knowledge
of the distribution of differences each new observation can be tested for errors. The
probability of observing a difference d as or more extreme than di is its p-value, pi

pi = min [P(d ≤ di),P(d ≥ di)] , (4)

where the probability P may refer to temporal differences i = 0 or differences with
neighbor i > 0. For example, consider the distribution shown in Fig. 1, in which 88
percent of differences fall between −2 and 3, with 7 percent of differences less than or
equal to −2, and 5 percent greater than or equal to 3. If di = −2, then P(d ≤ −2) = 0.07
and P(d ≥ −2) = 0.93. Thus pi = min[0.07,0.93] = 0.07. Similarly, if di = 3, then
P(d ≤ 3) = 0.95 and P(d ≥ 3) = 0.05. Thus pi = min[0.95,0.05] = 0.05. The value
of pi in each instance is compared to a chosen significance level α . The measurement
is flagged as anomalous if pi < α . We discuss how the combination of such p-tests
between a sensor and all its neighbors identifies types of events below.
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Fig. 1. An example of a probability density distribution illustrating the likelihood of observing
an extreme difference. In this example, 88% of differences are between −2 and 3, with 7% of
differences less than or equal to −2, and 5% greater than or equal to 3.

4.1 Statistical Inference

Each probability distribution P(d) is learned from observed differences. There are sev-
eral standard ways to implement this estimation, depending on the degree of prior
knowledge. If the distributions are known to be well described by particular class of
functions, then learning consists of estimating corresponding parameters. Filters, which
specify sequential rules for parameter estimation, can then usually be constructed and
optimized in order to minimize memory storage. If no parametric representation is ade-
quate standard methods to construct non parametric distributions, in terms of frequency
histograms, are employed.
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Parametric estimation. If the distributions of differences are well fit by known distri-
butions, estimation can be cast in terms of computation of distribution parameters from
data. From the point of view of minimizing storage, estimation should be performed
sequentially, so that only distribution parameters and current measurements are kept
in memory at each single time. This can be achieved via the construction of filters to
update estimators for distribution parameters [25].

Because distributions of differences of environmental variables are usually character-
ized by a small variance it is suggestive that, for sufficient number of observations, their
shape may be well described by Gaussians. For a normal distribution P(d) is defined
by its mean and variance, which may be computed via standard maximal likelihood
(unbiased) standard estimators, from t measurements as

μi,t =
1
t

t

∑
k=1

di,k, σ2
t =

1
t − 1

t

∑
k=1

(di,k − μi,t)2, (5)

which can be written using sequential updates as

μi,t =
(t − 1)μi,t−1 + di,t

t
≡ μi,t−1 + Kt (di,t − μi,t−1) , (6)

σ2
i,t =

1
t − 1

[
(t − 2)σ2

i,t−1 +
t

t − 1
(di,t − μi,t)

2
]

≡ 1
1 − Kt

[
(1 − 2Kt)σ2

i,t−1 +
Kt

1 − Kt
(di,t − μi,t)2

]
, (7)

where t indexes times when differences are observed (for simplicity, assumed here to
be synchronous across the network), and μi,0 = σ2

i,0 = σ2
i,1 = 0. Kt is usually referred to

as the gain factor in the context of filters. In the familiar case of t observations which
are equally weighted the maximum likelihood estimator implies that Kt = 1/t.

Because our observations are correlated, we use the functional freedom introduced
by Kt to optimize inference of missing or erroneous values. (Similar procedures can be
applied to parameters of other distributions.) By varying the gain factor Kt we obtain
the best estimator for the distribution parameters under the joint constraints of a lim-
ited number of samples and non-stationary data. The limit as Kt → 0 corresponds to no
update of the distribution resulting from the current reading. Even if perfect a priori
knowledge of the parameters is given at some time, this eventually fails because of the
non-stationarity of environmental data streams. As a consequence, the error between
actual and predicted data must increase, eventually, as Kt → 0. On the other extreme,
when K → 1, only the current measurement is used in predicting the distribution. This
fails because of the standard estimation problem that a small sample of realizations
generates imprecise parameter determinations. This reasoning indicates that there is an
intermediate value for Kt that minimizes the error between actual and inferred measure-
ments. We illustrate these features in the next section with data from the Sensor Web
deployed at the Sevilleta LTER site.

Estimation of non-parametric distributions. When the distributions are not known to
belong to a particular class, non-parametric estimation is still straightforward, although
resulting in larger memory requirements [26].
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Here we perform the estimation of the probability density for differences as a
simple frequency histogram by dividing the interval of possible differences, [ld ,ud ],
into m subintervals, dictated in most cases by the corresponding sensor resolution.
In this sense discretization of measurements is unavoidable in practice and the non-
parametric estimation introduces no further approximation. We should nevertheless
keep in mind that binning of data to construct frequency histograms is usually accept-
able only when the underlying distribution P(d) is approximately constant over the bin
size [26]. As discussed below (see Fig. 3) the sensor precision may suffice to satisfy
this criterion Figs. 3 (b)-(d), or have single bins with considerable excess of observa-
tions [Fig. 3 (a)].

The average precision, (ud − ld)/m achieved in the estimation of differences, is gen-
erally much higher than that of the Bayesian classifier, (u− l)/m, because ud − ld is typ-
ically much less than u− l. For example, while temperature readings may range from 0
to 100 degrees, differences between temperature readings at neighboring sensors may
only vary between −5 and 5 degrees. Thus using 100 subintervals yields an average
precision of 0.1 degrees for this method versus 1 degree for the Bayesian classifier.

Sample size and memory requirements. The advantage of using a parametric es-
timation, whenever it is applicable, is that a node is not required to store previously
observed differences; only the current estimates for the distribution parameters and the
number of utilized instances are required. For a normal distribution this is μi and σ2

i for
differences in time and differences in space relative to each neighbor, and also t. Thus
the total storage required in this case is 2(k + 1) floating point numbers and an integer,
roughly 24 bytes for a node with two neighbors. In addition, the mean and variance can
be approximated from as little as 10 observed differences. Other distributions which
may be relevant in sensing problems such as Laplace, Poisson, or negative binomial,
require similar or smaller estimation effort and memory storage.

To approximate P(d) without parametric assumptions, as a frequency histogram, a
node keeps a count of the number of times observed differences fall in each subinterval.
The probability P(d ≤ di) is the sum of counts for subintervals overlapping (−∞,di],
normalized by the sum of all counts. Therefore, in the non-parametric case, a node
needs to store m(k + 1) integers or roughly 4m(k + 1) bytes. For example, to cover
a range of differences spanning 10 degrees with one degree precision, a node with 2
neighbors would have to store 30 states or roughly 120 bytes, whereas the Bayesian
classifier would have to store roughly 2 megabytes. In addition, the amount of learning
data required to populate the counts is much smaller than for the Bayesian classifier.
For example, to cover a range of differences spanning 10 degrees with 1 degree preci-
sion would require about 100 observations (roughly an order of magnitude greater than
the size of the state space), versus about 5 million learning instances for the Bayesian
classifier. In terms of learning time for a node taking a reading every five minutes, this
method would require about 9 hours, versus 47 years for the Bayesian classifier. In
some cases, a number of measurements commensurate with the size of the state space
may suffice, resulting in learning times an order of magnitude below these numbers;
however, the ratio between the learning times for each method would be the same.
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4.2 Statistical Anomalies: Error and Event Detection

The estimated distributions of differences enable the acceptance or rejection of new
measurements based on their likelihood. We adopt a simple p-value test, as described
above, to determine if a new measurement difference is significant. If the new difference
fails the significance test it is flagged as anomalous. Table 4.2 illustrates how different
event types are encoded in the structure of these tests between a reference node l and
the ensemble of its neighbors. We consider three characteristic situations.

First, for a standard measurement all observed differences at all nodes are significant.
We refer to this situation as a global significance consensus because all tests agree and
are significant. In this situation readings should be accepted and used to update statis-
tics. Next, if there is a single point failure at sensor l then it will observe a global failure
consensus, indicating an anomaly in time, relative to its earlier reading, and to each of
its neighbors. In this situation sensor l identifies its measurement as anomalous, and
may discard it. Furthermore, and assuming no other point failures for simplicity, each
of the neighbors of l observes that each of its observed differences is significant, except
for that to sensor l. This allows them to identify an error at l and produce their estimate
of l’s correct reading. We return to this point below. Finally, if there is a common mode
event across the network, an anomaly may be detected for temporal differences but a
spatial significance consensus will still be observed. Each sensor observers this same
structure of p-value tests. This type of event may indicate a common mode failure or a
real event, such as rain. Such discrimination may be identifiable through the considera-
tion of correlations across different types of sensors (air temperature, relative humidity,
soil moisture) but lies beyond the scope of this work. Ambiguous events may also take

Table 1. Determination of event types from combined p-value tests

Event type Pod l Neighboring Pods

Standard measurement p0 > α , pi�=0 > α p0 > 0, p j �=0 > α
Point failure p0 < α , pi�=0 < α p j=l < α , p j �=l > α

Common event p0 < α , pi�=0 > α p0 < α , p j �=0 > α

place, where a fraction of all differences may fail significance tests, but not be easily
classifiable as a single point failure or common mode event.

It may be desirable to combine various combinations of p-value tests in time and
in space to each sensor’s neighbor into a single significance test, that e.g. identifies
consensus. The combination of multiple p-value tests into a single significance test
has a long history in statistics going back to the work of Tippett and Fisher in the early
1930s [27]. Fisher’s method is still probably the most widely used procedure. It assumes
that the pi are independent and uniformly distributed and so the combination

− 2
k

∑
i=1

ln(pi) , (8)

is distributed as a χ2
2k distribution with 2k degrees of freedom. The significance of the

joint p-value tests is then computed as the probability of obtaining a value as or more
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extreme than that of expression (8) for a χ2
2k distribution. Because this method of com-

bining likelihood tests involves the geometric average of the pi it is biased towards
lower values of pi and is not a good identifier of global or spatial consensus which, as
indicated in Table 4.2, are the salient features of our expected events [27].

Several combinations of the set pi which avoid these biases and are good identifiers
of consensus have been proposed to address this issue. Among these, the z-transform
test and the sum of p-values are the most widely used [28]. The z-transform test aver-
ages normal variables z each corresponding to a pi and evaluates the significance level
of this combination for a Gaussian distribution. Although the z-transform method is
feasible, a much simpler method is the consideration of the sum

p =
1
k

k

∑
i=0

pi, (9)

which can be compared to a desired significance level, typically of order α . This is the
procedure we adopt below, guided essentially by simplicity. We emphasize, however,
that many subtleties arise when taking into account the possible dependence of the
several tests, which conditions the distribution of the variable combining the pi, and
consequently the nature of its significance test and choice of significance level as a
function of those for individual tests. We intend to study these issues in future work
with expanded datasets.

As a final remark, we note that if it is practical to perform the temporal and spatial
(relative to neighboring sensors) significance tests independently, then a simple hierar-
chical structure for event classification becomes apparent. A temporal anomaly p0 < α
indicates an event. The event can be a point failure at the present sensor if there is also
a spatial failure consensus, or a common mode if there is a spatial significance consen-
sus. If no spatial consensus of either type is present the event is ambiguous and may be
flagged for further study and possible creation of a new event class.

4.3 Inference of Missing Readings

As mentioned above the structure of temporal and spatial anomalies in the statistics of
differences between a node and its neighbors allow a sensor to identify an error in its
own measurement (global failure consensus) and its neighbors to identify the offending
sensor and supply it with their estimation of its probable correct reading.

The most natural estimator of a sensor’s missing or incorrect reading by neighbor i
is simply

φ̂ (i) = φi + di, (10)

where di is drawn from the distribution of differences between the two nodes. Averaging
over di and over all neighbors leads to

φ̂av =
1
k

k

∑
i=0

(φi + μi), (11)

where φ̂ is the reading estimate and μi is the mean difference relative to the ith neigh-
bor, or if i = 0, φ0 is the previous reading and μ0 is the mean difference between the
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current and previous measurements. A weighted average based on a measure of mutual
information (e.g. smaller variance) between the nodes could also be adopted, but we
use the simplest scheme here. In the case where the distribution class is known, μi is a
stored value. If instead the distribution class is not known, the mean difference can be
approximated by the usual maximum likelihood estimator

μi =
1
m

m

∑
j=1

c jm j, (12)

where c j is the count for the jth subinterval and m j is the midpoint of the jth subinterval.

5 Application to Ecological Data from Sevilleta LTER Site

In this section, we test the method using ecological data collected by a Sensor Web,
developed at NASA/JPL [11,2], deployed at the Sevilleta LTER site. A Sensor Web is a
spatially distributed macro instrument, where every component sensor node (or “pod”)
shares its readings, at each measurement cycle, with all other pods in the system. The
Sensor Web is designed to maintain synchronicity among all component pods which
makes it ideal for the type of correlated statistical analysis proposed in the previous
section.

Fig. 2. Aerial photograph showing the Sensor Web layout at the Sevilleta LTER site. Fourteen
sensor pods are distributed over a range of a few hundred meters to measure microclimate effects
of the surrounding arid land plants. At regular time intervals the pods transmit data wirelessly to
nearby pods. Sensor measurements eventually reach pod 0 where they are recorded.

The Sensor Web was initially deployed at the Sevilleta LTER site in 2003 as part of an
ongoing effort to measure canopy microclimate effects of three arid land plant species:
Juniperus monosperma (one-seeded juniper), Larrea tridentata (creosote bush), and
Prosopis glandulosa var. torreyana (honey mesquite) [13]. The deployed Sensor Web
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consists of 14 sensor pods (see Fig. 2) which measure temperature, humidity, light flux,
soil temperature, and soil moisture and transmit the data wirelessly to nearby pods.

The method for inferring missing readings, presented in the previous section, was
tested by comparing inferred values to actual measurements. In this example, see Figs. 2
and 3, we selected an environmental variable (air temperature), a pod (pod 5), a set of
neighbors (pods 8, 9, 11, 12, and 13), and a period of time (the first 2 days of July,
2005). We used the parametric version of the method [Equations (6) and (7)] because
the distributions of differences are approximately normal (e.g., see Fig. 3). Figure 4(a)
shows the inferred and actual readings for pod 5. The average error over the time period
was 0.717 degrees Celsius.
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Fig. 3. A histogram of measurement differences recorded at the Sevilleta LTER site during July
of 2004. (a) air temperature differences between pod 5 its previous reading (5 minutes earlier), (b)
synchronous air temperature differences between pod 5 and pod 12, and (c) deep and (d) shallow
soil temperature between the same two pods. The solid line shows a normal distribution with the
same mean and variance as the data.

Because nodes have different placements, corresponding to distinct micro-climates,
the distributions of differences are still weakly non-stationary. During warmer parts of
the day, the more exposed nodes are warmer, but during cooler parts of the day (e.g.
at night) the the more exposed nodes are cooler. Under these non-stationary conditions
the average measurement error can be reduced by using Eqs. (6) and (7) with the appro-
priate value of Kt that optimizes the learning rate. Figure 4(c) shows the average error
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Fig. 4. Actual versus inferred air temperatures at sensor pod 5 for measurements taken in July
2005. The inferred measurements were computed using Eq. (11), with the average estimated via
Eq. (6) with (a) Kt = 1/t, (b) Kt = K = 0.46. (c) The average error between the actual and inferred
air temperature data as a function of the learning rate, K. The average error is computed using the
entire two-day period of measurements. The minimum average error of 0.366 degrees Celsius is
obtained for K = 0.46.
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Fig. 5. Detected anomalies (marked by circles) in the pod 13 air temperature measurements for
a period at the beginning of 2005. To detect the anomalies difference distributions for pod 13
(time difference) and pods 5, 11, 12, and 13 (space differences) were recorded for all of 2004 and
the significance was computed using the combined p-value test of Eq. (9) with α = 0.005. The
method clearly captures the anomalies, as seen in (a), including some that are within the range
of valid measurements. The two anomalies on March 23 and 24, shown in more detail in (b) are
near zero degrees which is a common nighttime low temperature during that time of year.
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as a function of Kt = K, assumed constant. The minimum average error of 0.366 degrees
Celsius is achieved for K = 0.46. Figure 4(b) shows the inferred and actual readings for
pod 5, using K = 0.46.

More generally we tested the anomaly detection and event type identification scheme
on air and soil temperature measurements recorded during the first part of 2005. The dif-
ference distributions were computed from measurements of pod temperatures recorded
during 2004. With the significance level for the combined p-value tests in Eq. (9) set
to α = 0.005, the method detects measurements that appear likely to be anomalous, as
shown in Fig. 5, with no obvious false positives. Increasing α leads to the detection of
more events, which may in some cases be due to instrument noise instead of outright
failure. These effects can in principle be assessed if a model of instrument noise, and
how it couples to true physical measurements, is provided. In this case, the distributions
of differences between any two sensors may be understood in terms of the composition
of failures, instrument noise, and physical measurements. Prior knowledge, or estima-
tion, of the former may allow their subtraction from truly physical data streams. Here
we have shown that, even in the absence of this knowledge, failures and instrument
noise can be excluded from recordings and automatically corrected for at a chosen level
of significance.

To understand these effects more clearly we have also applied our procedure to syn-
thetically generated data containing diurnal and seasonal cycles, and with added small
amplitude random white noise (to simulate instrument measurement imprecision) and
larger amplitude infrequent fluctuations (to account for true sensor errors). The algo-
rithm, with suitably adjusted significance, performed flawlessly at identifying sensor
errors, over a variety of noise and failure amplitude and frequencies, provided the am-
plitude of errors is larger than the instrument noise.

6 Discussion and Outlook

We presented a practical, distributed algorithm for detecting statistical anomalies in
ecological applications of distributed sensor networks. Both point failures and common
mode events of sensors are identified and distinguished as statistical anomalies in the
spatio-temporal structure of measurements between a sensor and its neighbors. Specif-
ically, to avoid issues of non-stationarity, each sensor-processor learns the statistical
distribution of differences between its measurements and each of its neighbors, as well
as between its own measurements at consecutive times. Anomalies are detected, and
their structure identified, in terms of statistical p-value significant tests for new mea-
sured differences relative to the expectations from these distributions.

The method is intentionally simple to cope with the limited memory and processing
capabilities that characterize current sensor network technology. For this reason there
are several directions for improvement. First, the operation of differencing, aimed here
at factoring out the effects of common diurnal and seasonal drivers and reducing the
size of the estimation space, can be achieved in principle by more sophisticated and
accurate methods that are inspired by similar problems in image processing [20], signal
processing [21] or component decomposition [29]. Methods for meta-analysis [30] to
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combine a variety of statistical tests can also be constructed to take into account external
information about sensor or environmental specificities.

While these are interesting directions for future research we also emphasize that,
for the empirical environmental data streams discussed above, the methods developed
here suffice. They have the added bonus of being simple and implementable in sen-
sors with very small amounts of memory and processing. The consideration of further
constraints such as hard energy limitations, specific network and routing geometries,
etc., is not necessary for most practical ecological distributed sensing problems. Instead
the real challenge typical of ecological applications (and shared by others that measure
physical and/or social environments) is the unpredictable, non-stationary nature of data
streams and the fact that measurements tend to relate only indirectly to the hypotheses
of interest. These issues place the emphasis on methods that use the rich spatiotemporal
structure collected by networks of sensors to provide reliable statistical inference and
to identify multi-variable event structures that may allow the testing of high level hy-
potheses. We believe that differencing, broadly understood, combined with sequential
real-time estimation and meta-analysis of simultaneous statistical tests are important in-
gredients of any method concerned with automatic event detection and error correction
in distributed sensor networks.

From the practical point of view, we have also shown that the combination of these
ingredients, when compared to an alternative method based on Bayesian classifiers,
leads to algorithms that are more storage-efficient, learn faster, and are more robust to
non-stationary phenomena. In addition, the storage, processing, and communication re-
quirements are such that it can be implemented in a distributed fashion, on each of the
nodes in the network, thus reducing remote communication. Because of these qualities,
this class of algorithms can provide data quality assurance for current generation of
wireless sensor networks, such as the Sensor Web deployed at the Sevilleta LTER site.
In the process of learning distributions of differences for data quality assurance, the al-
gorithm also produces statistics that compare different microclimate environments [13],
to each other and to control experiments, which are of immediate scientific ecological
interest.
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