
Clickstream Data Yields High-Resolution Maps of Science
Johan Bollen1*, Herbert Van de Sompel1, Aric Hagberg2., Luis Bettencourt2,3., Ryan Chute1., Marko A.

Rodriguez2, Lyudmila Balakireva1

1 Digital Library Research and Prototyping Team, Research Library, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America, 2 Theoretical

Division, Mathematical Modeling and Analysis Group, and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of

America, 3 Santa Fe Institute, Santa Fe, New Mexico, United States of America

Abstract

Background: Intricate maps of science have been created from citation data to visualize the structure of scientific activity.
However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that
exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps
track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains.
Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more
current maps of science.

Methodology: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly
web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data
set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the
humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted
from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty
Research Institute’s Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines
the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to
the natural sciences.

Conclusions: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific
activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.
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Introduction

Maps of science derived from citation data [1,2,3,4,5,6,7]

visualize the relationships among scholarly publications or

disciplines. They are valuable instruments for exploring the

structure and evolution of scholarly activity. Much like early

world charts, these maps of science provide an overall visual

perspective of science as well as a reference system that stimulates

further exploration. However, these maps are also significantly

biased due to the nature of the citation data from which they are

derived: existing citation databases overrepresent the natural

sciences; substantial delays typical of journal publication [8,9,10]

yield insights in science past, not present; and connections between

scientific disciplines are tracked in a manner that ignores informal

cross-fertilization.

Scientific publications are now predominantly accessed online.

Scholarly web portals provide access to publications in the

natural sciences, social sciences and humanities. They routinely

log the interactions of users with their collections. The resulting

log datasets have a set of attractive characteristics when

compared to citation datasets. First, the number of logged

interactions now greatly surpasses the volume of all existing

citations. This is illustrated by Elsevier’s announcement, in 2006,

of 1 billion (16109) article downloads since the launch of its

Science Direct portal in April 1999. In contrast, around the time

of Elsevier’s announcement, the total number of citations in

Thomson Scientific’s Web of Science from the year 1900 to the

present does not surpass 600 million (66108). Second, log datasets

reflect the activities of a larger community as they record the

interactions of all users of scholarly portals, including scientific

authors, practitioners of science, and the informed public. In

contrast, citation datasets only reflect the activities of scholarly

authors. Third, log datasets reflect scholarly dynamics in real-

time because web portals record user interactions as soon as an

article becomes available at the time of its online publication

[8,9]. In contrast, a published article faces significant delays

before it eventually appears in citation datasets: it first needs to be

cited in a new article that itself faces publication delays [11,12],

and subsequently those citations need to be picked up by citation

databases.
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Given the aforementioned characteristics of scholarly log data, we

investigated a methodological issue: can valid, high resolution maps

of science be derived from clickstream data and can clickstream data

be leveraged to yield meaningful insights in the structure and

dynamics of scholarly behavior? To do this we first aggregated log

datasets from a variety of scholarly web portals, created and analyzed

a clickstream model of journal relationships from the aggregate log

dataset, and finally visualized these journal relationships in a first-

ever map of science derived from scholarly log data.

Methods

Data collection
We aggregated a log dataset that contains approximately 1

billion (16109) user interactions. These interactions were logged in

the course of 2006 and 2007 by web portals operated by the

following scientific publishers, aggregators, and institutions:

Thomson Scientific (Web of Science), Elsevier (Scopus), JSTOR,

Ingenta, University of Texas (9 campuses, 6 health institutions),

and California State University (23 campuses). Strict confidenti-

ality agreements prevent the distribution of any comparable and

identifiable statistics with regards to individual web portals.

However, the results of the analysis of aggregated log data across

web portals, such as our map of science, can be freely published.

These distinct portals were selected for two reasons. First, their

log data tracks user interactions across the boundaries of individual

publisher collections. Second, the resulting aggregate log data set

was expected to cover sources in the natural sciences, social

sciences, as well as the humanities.

From this aggregate log dataset, we selected a subset that

includes user interactions that occurred between March 1st 2006

and February 1st 2007 because this timeframe was covered by the

logs of all aforementioned portals. The resulting log dataset

contains 346,312,045 user interactions pertaining to 97,532 serial

publications. Many of these publications are scholarly journals, but

weekly magazines and newspapers such as The New York Times

are also included.

We then processed this log dataset of individual interactions

[13] to select only those that are considered expressions of interest

by a user for a specific article, for example clicking links to request

the full-text of the article or the abstract of the article. This process

included removing interactions such as keyword searches and next

page requests, as well as those that could straightforwardly be

attributed to web crawlers by means of their hostnames. Finally,

consecutive expressions of interest by a user in the same article in

the course of the same session were interpreted as a single

expression of interest in the article.

Journal domain classification
In order to assign a general scientific discipline to each journal

we extracted journal classifications from two databases, namely

Thomson Scientific’s Journal Citation Reports (JCR) classification

codes (approx. 8,000 journals in the Natural Science and Social

Science edition) and the Dewey Decimal system (approx. 40,000

journals) as provided by Ulrich’s Serials Directory. These are the

two most complete, prominent and widely applied journal subject

classifications available.

JCR and Dewey Decimal classification codes were retrieved for

each journal in our logs. However, the JCR and Dewey Decimal

classification systems do not organize their classification codes into

a common taxonomy, meaning that no comparison can be made

between JCR and Dewey Decimal classifications at various levels

of abstraction, e.g. JCR’s ‘‘medicine’’ vs. Dewey Decimal’s

‘‘Medical sciences – Oncology’’. The JCR and Dewey Classifica-

tion codes were therefore manually mapped to the Disciplines

hierarchy of the Getty Research Institute’s Art and Architecture

Thesaurus (AAT)[14] that was used as a unifying, taxonomic

classification structure. This involved the mapping of 215 JCR

classification codes into 202 matching AAT disciplines and 425

Ulrich Dewey Values into 98 matching AAT disciplines, at various

depths in the AAT taxonomy.

The AAT Disciplines hierarchy is structured as a taxonomical

tree that starts by differentiating between the social sciences,

humanities, natural sciences and interdisciplinary sciences, and

splits these broad categories into increasingly finer subject areas.

As such we could place each journal in our log data at a branch in

the AAT taxonomy as shown in Fig. 1. A JCR or Dewey Decimal

classification code and matching AAT taxonomy position could be

assigned to the journals involved in 93% of all interaction events.

The distribution of journal domain classifications for the log

data obtained from each provider indicates its degree of coverage

for the different domains in the AAT. The domain distribution

obtained from pooling interaction events over all data providers, as

shown in Table 1, reveals log data in which interaction events

pertain to journals in the social sciences (47%) and natural sciences

(41%) in nearly equal numbers. In addition, the humanities

correspond to roughly 8% of all interaction events, while

interdisciplinary fields account for 3%. This distribution deviates

only slightly from the distribution of degrees conferred in the

entire University of California (UC) system in 2007 by domain.

Although it is not feasible to perform a full census of the scientific

community, this indicates that the representation of scientific

disciplines in our usage data, conforms at least to that observed in

a large, diverse scientific community such as the UC system.

The discipline coverage of our log dataset can be contrasted to

the coverage provided by the JCR, a citation database that is

commonly used in the construction of journal-based science maps.

When analyzing the total amount of citations in the Science vs.

Social Science edition of the 2007 edition of JCR, a distribution of

journal domains emerges that is heavily skewed towards the

natural sciences as opposed to the social sciences and humanities,

respectively 92.8% vs. 7.2%.

A clickstream model of journal relationships
For each user interaction the resulting dataset contained the

following data elements:

Figure 1. Matching JCR and Dewey Journal classifications to
the AAT taxonomy.
doi:10.1371/journal.pone.0004803.g001
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Article identifier. Or sufficient metadata to identify the

article to which the interaction pertained.

Date-time. A date-time of the interaction, to the second.

Session identifier. A session identifier assigned by the web

portal at the start of a user’s information gathering session [15].

We use the session identifier and date-time to reconstruct

temporal sequences [16,17] of interactions by the same user.

These sequences can be mapped to article clickstreams, each of

which records the navigation of a user from one article to another

[18,19]. Since each article is published in a journal, these article

clickstreams can be translated to journal clickstreams. The

resulting data set is a collection of journal clickstreams that reflects

the navigation of users from one journal to another when

interacting with scholarly web portals (Fig. 2).

We used this dataset to compute relationships among journals

on the basis of their joint occurrences in the resulting journal

clickstreams. We did so by using a method similar to association

rule learning [20] that is commonly used in data mining

applications and that is based on the co-occurrence principle.

Applied to our case, this principle states that a journal vi is related

to a journal vj if vi directly precedes vj within a journal clickstream;

the strength of the relationship between vi and vj is expressed as

the probability by which one follows the other over all journal

clickstreams. When computing these journal relationships for the

entire dataset, we effectively construct a stochastic model of how

users move between pairs of journals in their online interactions.

More formally, we build a first-order Markov chain model of the

clickstream data [21] in the following way. We define each recorded

interaction u as a set that contains a session identifier s, a date-time t
and the article a to which the interaction pertained, i.e. u~ s,t,af g.
Our usage data log U then consists of a set of n interactions

U~ u1,u2, � � � ,unf g. We now define F the set of clickstreams

extracted from U , such that each element f [F , f5U consists of an

set of interactions with identical session identifiers, ordered by their

data-time values, i.e. f ~ Vu[U ,As : s uð Þ ^ t uið Þvt uiz1ð Þð Þ where

s uð Þ and t uð Þ denote the session identifier and date-time of

interaction u respectively.

Every interaction in the clickstream of F pertains to a particular

article ai. We can thus convert each f [F to an article clickstream

fa~ a1,a2, � � � ,akð Þ. Likewise, since each article a is published in a

journal v, we can convert every article clickstream fa to journal

clickstream fv so that each fv~ v1,v2, � � � ,vkð Þ.
Over all journal clickstreams we count the number of times

N vi,vj

� �
that a particular ordered journal pair vi,vj

� �
was

observed. We do this for all pairs of journals vi,vj

� �
in which

j~iz1, i.e. vj is immediately adjacent to vj in the journal

clickstream. Finally, we can calculate the transition probability

P vi,vj

� �
~

N vi,vj

� �
P

j N vi,vj

� �
and form a matrix M whose entries mi,j~P vi,vj

� �
.

Applying the described procedure to our log dataset results in a

matrix M that has n = 97,532 rows and columns, corresponding to

the number of unique journals, and contains 6,783,552 non-zero

entries.

The journal relationships in M are intentionally directional, i.e.

P vi,vj

� �
=P vj ,vi

� �
, for two reasons. First, the entries of M

represent conditional probabilities derived from clickstream

sequences, not symmetric journal similarities. The temporal order

of user interactions induces a directed relation. Second, directed

relations can be converted to undirected relations, but not vice

versa. Maintaining the directionality of journal relations thus

preserves information while at the same time establishing a

foundation for additional analysis that may or may not rely on

relation directionality.

Table 1. Comparison of journal domain classifications in
usage data set to JCR (Science and Social Science edition
combined) and UC degrees conferred in 2006.

Domain Usage UC Degrees JCR

Natural Science 37% 39% 92.8%

Social Sciences 45% 46% 7.2%

Humanities 14% 15%

Source: http://www.ucop.edu/ucophome/uwnews/stat/statsum/fall2007/
statsumm2007.pdf (table 9).
doi:10.1371/journal.pone.0004803.t001

Figure 2. The extraction of journal clickstream data from article level log data. Usage log data consists of sequences of timed interaction
events u1,u2, . . .ð Þ. Interaction events issued by the same user from the same client can be grouped in user sessions. Each user session represents a
clickstream fi that can be expressed as a sequence of the articles that were part of the session’s interaction events, i.e. a1,a2, � � �ð Þ. Since every article is
published in a journal, we can derive journal clickstreams, i.e. v1,v2,v3, � � �ð Þ. From the collection of all journal clickstreams we can calculate the
probability P vi ,vj

� �
.

doi:10.1371/journal.pone.0004803.g002
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Visualization
To visualize a clickstream map of science on the basis of M we

proceeded as follows. To only use journal relationships for which

we had a minimum number of observations to support the

particular connection, we selected the 50,000 journal pairs with

the highest N vi,vj

� �
values. Although this threshold is arbitrary it

corresponds to N vi,vj

� �
w170, i.e. for each journal relationship we

required at least 170 observations. The distributions in Fig. 3 show

how this threshold approximates the distribution’s ‘‘scree point’’; it

captures a wide range of edge weights while excluding journal

relationships with relatively low N vi,vj

� �
values.

This set of journal relations pertained to 2,307 journals, and

formed a reduced matrix M ’. Table 2 list the network parameters

of M and M ’, including matrix density. Fig. 4 provides a summary

of the consecutive data processing steps that led to M ’.

To unclutter the map and show only the most relevant

relationships per journal, we only retained the 5 strongest outbound

relationships for each journal. Subsequently, we created a symmetric

matrix M ’zM ’T
2

� �
to obtain only a single edge for any journal pair in

the visualization. From this matrix we selected the largest connected

component to obtain a fully interconnected visualization.

Journals were then positioned in a map using the Fruchterman-

Reingold (FR) network layout method [22], which optimizes

journal positions so that they balance geometric node repulsion

with node attraction resulting from the relationship strengths in

M ’. The distances between any pair of journals in the map

correspond to the FR layout algorithm balancing these two forces

on the basis of the entries of M ’. In the resulting map each circle

represents a journal, connected to other journals. These

connections are given by M ’. The radius r of each circle is scaled

to the natural logarithm of the journal’s degree centrality [23]

Cd vð Þ, i.e. r*ln Cd vð Þ, which is an indicator of the total amount

of occurrences of the journal in M ’, thus its importance to the

visualization. The natural logarithm compresses the upper range

of circle radius values to unclutter the map.

Color codes were assigned to each journal on the basis of its

AAT discipline classification [14]. Colors were selected to achieve

a maximal overlap with the color scheme proposed by Boyack and

Klavans [24], according to which pink and blue indicate physics

and chemistry, green indicates biology, red indicates medicine,

and yellow and white represent social sciences and humanities,

respectively. For the sake of clarity, individual journal titles were

omitted. Instead, groups of journals are labeled according to the

coarse-grained disciplines they cover.

The resulting map is show in Fig. 5 and further discussed in the

following sections.

Figure 3. Distribution of edge weights in M.
doi:10.1371/journal.pone.0004803.g003

Table 2. Network parameters of original (M) and reduced
(M ’) clickstream matrices.

Network matrix

Parameter M M ’

Journals 97,532 2,307

Edges 6,783,552 50,000

Matrix density 0.071% 0.939%

Strongly Connected Components (SCC) 16,474 236

Journals in SCC 80,934 1,944

Average journal clustering coefficient (SCC) 0.285 0.514

Diameter of largest SCC 37 14

doi:10.1371/journal.pone.0004803.t002

Figure 4. Summary of data processing leading to the map of science.
doi:10.1371/journal.pone.0004803.g004
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Results and Discussion

According to the above mentioned methodology we constructed

a map of science that visualizes the relationships between journals

according to user clickstreams. We first discuss the visual structure

of the map, and then attempt to validate the structural features of

its underlying clickstream model by comparing the latter to journal

centrality rankings and an alternative model of journal relations

derived from classification data.

A clickstream map of science
Any interpretation of the visual structure of the map in Fig. 5

will be governed by the following considerations:

Convergence. The FR algorithm can converge on different

visualizations of the same network data. We do not claim Fig. 5 is

the only or best possible visualization. It was selected because it

represents a particularly clear and uncluttered visualization of the

connections between journals in M ’, and most importantly, its

main structural features were stable across many different

iterations of the FR algorithm.

Connections. The journal connections shown in the map are

given by M ’, not the FR algorithm. They are thus not artifacts of

the visualization.

Clustering. The FR algorithm will pull together small-scale

clusters of journals that are strongly connected in M ’. The

appearance of small-scale journal clusters is thus directly related to

Figure 5. Map of science derived from clickstream data. Circles represent individual journals. The lines that connect journals are the edges of
the clickstream model in M ’. Colors correspond to the AAT classification of the journal. Labels have been assigned to local clusters of journals that
correspond to particular scientific disciplines.
doi:10.1371/journal.pone.0004803.g005
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the entries of M ’ and they are thus not considered artifacts of the

visualization.

Geometry. Although the positions of journals and clusters

relative to each other are shaped by their connections in M ’, their

exact geometric coordinates vary depending on the layout algorithm

and are thus indeed considered artifacts of the visualization.

In summary, the connections between journals and small-scale

clusters in the network visualization in Fig. 5 are determined by

M ’. They are not artifacts of the visualization. However, one can

not draw conclusions from the exact, geometrical coordinates of

journals and clusters in the map.

To provide a visual frame of reference, we summarize the overall

visual appearance of the map of science in Fig. 5 in terms of a wheel

metaphor. The wheel’s hub consists of a large inner cluster of tightly

connected social sciences and humanities journals (white, yellow

and gray). Domain classifications for the journals in this cluster

include international studies, Asian studies, religion, music,

architecture and design, classical studies, archeology, psychology,

anthropology, education, philosophy, statistics, sociology, econom-

ics, and finance. The wheel’s outer rim results from a myriad of

connections in M ’ between journals in the natural sciences (red,

green, blue). In clockwise order, starting at 1PM, the rim contains

physics, chemistry, biology, brain research, health care and clinical

trials journals. Finally, the wheel’s spokes are given by connections

in M ’ that point from journals in the central hub to the outer rim.

The connections between the journals in the map’s rim cross

multiple domains. For example, alternative energy (rim, 3PM)

connects to pharmaceutical research and chemical engineering,

which itself further connects to toxicology studies and biotechnol-

ogy. Brain research (rim, 6PM) is connected to genetics, biology,

animal behavior, and social and personality psychology. Human

geography studies connects to geography, plant genetics, and

finally agriculture. A number of clusters are well-connected to both

the natural science and social science clusters. For example,

ecology and biodiversity (5PM) connects the domains of biology

(rim, 5PM) and architecture and design (hub, 5PM). Production

and manufacturing (12PM) bridge the domains of physics and

engineering (rim, 2PM) and economics (hub, 11PM).

Validating the generated clickstream model
Journal centrality rankings. The map displays a dense,

centrally located cluster of social science and humanities journals

(hub). The question arises whether the central position of the social

sciences and humanities journals is merely an artifact of the

visualization, or whether these journals are in fact also central to

the network topology of M ’.
To verify this, we calculated the betweenness centrality [25]

(Table 3) and PageRank [26,27] (Table 4) of all journals in M ’.
Each ranking highlights a different interpretation of a particular

journal’s centrality in M ’.
The betweenness centrality of a journal vi is defined as the

number of geodesics (shortest paths) in M ’ that pass through vi.

Let si,j be the number of weighted shortest paths between journals

vi and vj in the graph and si,j vkð Þ be the number of those shortest

paths that pass through node vk. The weighted betweenness

centrality of node vk is then given by Equation 1:

Cb vkð Þ~
X

i=j=k

si,j vkð Þ
si,j

ð1Þ

Journals with high betweenness centrality values are those that

frequently sit on paths that connect a large number of other

journals and journal clusters; they will often be interdisciplinary

journals that serve as connectors between various domains. Table 3

lists the 15 journals with highest betweenness centrality; most of

these journals are indeed highly inter-disciplinary such as Nature,

Science, PNAS, Milbank Quarterly, Behavioral Ecology and

Sociobiology. The presence of social science journals, such as

Child Development and American Anthropologist, in this ranking

confirms their interdisciplinary natures and overlaps with their

central position in the map.

Table 3. Ranking of journals from M ’ according to
betweenness centrality.

Rank Journal
Top-level AAT
classification

1 Science Natural Sciences

2 Proceedings of the National Academy of
Sciences

Natural Sciences

3 Environmental Health Perspectives Natural Science

4 Chemosphere Natural Sciences

5 Journal of Advanced Nursing Natural Sciences

6 Nature Natural Sciences

7 Ecology Natural Sciences

8 Milbank Quarterly Natural Sciences

9 Applied and Environmental Microbiology Natural Sciences

10 Child Development Social Sciences

11 Behavioral Ecology and Sociobiology Social Sciences

12 Journal of Colloid and Information Science Natural Sciences

13 American Anthropologist Social Sciences

14 Journal of Biogeography Natural Sciences

15 Materials Science and Technology Natural Sciences

doi:10.1371/journal.pone.0004803.t003

Table 4. Ranking of journals from M ’ according to PageRank
(l~0:85).

Rank Journal
Top-level AAT
classification

1 Applied Physics Letters Natural Sciences

2 Journal of Advanced Nursing Natural Sciences

3 Journal of the American Chemical Society Natural Sciences

4 Ecology Natural Sciences

5 Nature Natural Sciences

6 Physical Review B Natural Sciences

7 Journal of Applied Physics Natural Sciences

8 American Economic Review Social Sciences

9 American Historical Review Social Sciences

10 Physical Review Letters Natural Sciences

11 Science Natural Sciences

12 Langmuir Natural Sciences

13 Journal of Chemical Physics Natural Sciences

14 American Anthropologist Social Sciences

15 Annals of the American Academy of
Political and Social Science

Social Science

doi:10.1371/journal.pone.0004803.t004

Maps of Science
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The PageRank of a journal is calculated by an iterative

procedure in which the PageRank of a journal is continuously

recalculated as a function of the PageRank of its predecessors in

the graph, according to Equation 2.

PR við Þ~
1{l

N
zl

X
j

PR vj

� �
O vj

� � ð2Þ

where PR við Þ denotes the PageRank of journal vi, N the number

of nodes in M ’, and O vj

� �
the out-degree of the predecessor

journal vj . PageRank values converge from a set of random initial

values toward a stable ranking after a given number of iterations.

PageRank favors prestigious journals that are well-connected to

other well-connected journals. Table 3 list the 15 journals which

the highest PageRank values in M ’; this ranking indeed favors

more specialized, prestigious journals, such as Applied Physics

Letters, Ecology, Physical Review B and American Anthropolo-

gist. The presence of social science and humanities journals in the

PageRank ranking, such as American Historical review and

Annals of the American Academy of Political and Social Science,

indicates their connectedness to other highly ranking journals and

subsequently their centrality in M ’.
Regardless of their use for cross-validating features of the

produced map of science, the rankings in Table 3 and Table 4

illustrate the possibility of ranking journals according to various

aspects of their centrality in clickstream data. For example, we note

that Nature and Science are among the 15 top-ranked journals in

both Table 3 and Table 4. This indicates that they have

considerable interdisciplinary appeal as well as high prestige among

users. The betweenness centrality and PageRank of PNAS diverge

more strongly; PNAS was ranked 2nd in the betweenness centrality

ranking, but 24th according to its PageRank. This suggests that

PNAS has strong interdisciplinary appeal among users, but a slightly

smaller degree of prestige compared to other top 15 journals.

Cross-validation of the clickstream model and map to the
AAT

The clickstream model represented by matrix M ’ expresses the

relations between pairs of journals. An inspection of the individual

journal relationships in Table 5 may provide an informal sense of

Table 5. Sample of journals pairs with high P vi,vj

� �
.

vi vj p vi ,vj

� �
N vi ,vj

� �
N við Þ

American Journal of International Law International Organization 0.0207 9,292 448,034

International Affairs 0.0184 8,254

International and Comparative Law Quarterly 0.0171 7,654

Foreign Policy 0.0167 7,500

American Political Science Association 0.0140 6,291

Journal of Educational Sociology American Journal of Sociology 0.0334 2,790 83,419

Journal of Higher Education 0.0303 2,529

Journal of Negro Education 0.0286 2,389

American Sociological Review 0.0276 2,303

Social Forces 0.0249 2,076

Surface Science Physical Review B 0.0704 2,555 36,282

Applied Surface Science 0.0341 1,239

Physical Review Letters 0.0339 1,230

Journal of Chemical Physics 0.0333 1,207

Applied Physics Letters 0.0327 1,188

Journal of Organic Chemistry Journal of the American Chemical Society 0.0873 4,141 47,439

Tetrahedron Letters 0.0865 4,105

Tetrahedron 0.0602 2,857

Organic Letters 0.0532 2,526

Angewandte Chemie 0.0305 1,448

Ecological Applications Ecology 0.0965 13,659 141,481

Conservation Biology 0.0524 7,408

Bioscience 0.0215 3,043

Annual Review of Ecology and Systematics 0.0215 3,043

Clinical and Experimental Allergy 0.0191 2,699

Annals of Mathematics American Journal of Mathematics 0.0705 5,392 76,526

American Mathematical Monthly 0.0579 4,432

PNAS 0.0156 1,195

Econometrica 0.0082 624

Mathematics Magazine 0.0077 587

doi:10.1371/journal.pone.0004803.t005
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the validity of journal relations in M ’. We selected 6 prominent

journals, i.e. those with high N við Þ values, and retrieved the 5

journals with which they have the highest highest probability

P vi,vj

� �
connection. All journal relations in Table 5 seem highly

valid, but this is a subjective observation.

However, we can cross-validate the map’s structure, represented

by matrix M ’, in a more objective manner by comparing it to an

independent set of journal relations as demonstrated by [28].

Assume we create an alternative matrix of journal relations A from

an independent, yet trusted data source unrelated to our usage

data. If M ’’s entries correspond to the structure of A, that finding

corroborates the validity of the structure of matrix M ’.
To perform such cross-validation two conditions need to be

satisfied:

1. M ’ and A must be derived from independent data sources.

2. A needs to represent journal relations at various levels of

granularity, above that of individual journal relations.

The AAT classification matches these requirements. First, the

journal classifications in the AAT are derived from two well-

established, commonly used classification schemes, namely Dewey

Decimal and JCR classification codes. These were defined

independent of our usage data and thus the relationships in M ’.
Second, the AAT expresses the classification of journals at various

levels of granularity to which the structural features of our map

can be compared.

We derived a model of journal relations, represented by matrix

A, from the AAT as follows. We denote the AAT classification of

journal vi as C við Þ. Since journal classifications can be retrieved

from the AAT at various distances a from the root of the

taxonomy, we denote the journal classification of journal vi at root

distance a as Ca við Þ.
For each journal pair vi,vj

� �
we can retrieve the corresponding

AAT classification pair Ca við Þ,Ca vj

� �� �
. We thus define the match

function f vi,vj ,a
� �

such that

f vi,vj ,a
� �

~
1 Ca við Þ~Ca vj

� �
0 Ca við Þ=Ca vj

� �
(

f vi,vj ,a
� �

maps each journal pair vi,vj

� �
in M ’ to a binary value

depending on whether their AAT classifications match at the

particular root distance a.

We then define the AAT classification match matrix Aa whose

entries ai,j are given by f vi,vj ,a
� �

; they represent a binary

indication of journal relationships according to their AAT

classifications. We can generate Aa matrices at any root distance

a. However, not all branches of the AAT taxonomy are equally

represented at aw4. We therefore chose 4 values that provided a

consistent range of classification granularities, namely a[ 1,2,3,4f g
each of which corresponds to an increasingly detailed classification

level with 4 being the most specific. The root distances a and the

number of distinct classifications at that level in the taxonomy Nc

are listed in Table 6.

We now formulate the null-hypothesis H0 as follows:

H0 = ‘‘Over all non-zero entries of M ’, the magnitude of

N vi,vj

� �
is not related to the probability that ai,j~1.’’

The probability of rejecting H0 increases as a decreases, since

classifications are being retrieved closer to the AAT root and thus

result in increasingly general associations.

We test the stated null-hypothesis by performing a Pearson’s x2

analysis (with Yates’ continuity correction) on four 262 contin-

gency tables constructed over a pairwise comparison of the non-

zero entries of M ’ and ai,ja at each a[ 1,2,3,4f g.
For each non-zero entry in M ’ we thus compare the following

two factors for the corresponding journal pair vi,vj

� �
:

Factor 1 N vi,vj

� �
is either above or below the median of Nk

values, denoted m0:5 Nkð Þ
vs.

Factor 2 ai,j,a is either 0 or 1

where Nk denotes the the set of all non-zero entries in M ’.
If the set of journal connections in M ’ are unrelated to those

given by their AAT classifications, i.e. if H0 holds, we expect the

frequencies in the cells of the 262 contingency tables to match

those predicted from their sum- and row-totals on the assumption

of statistical independence.

However, pv0:0001 values were found at all a levels, i.e. for

a~1 : pv0:0001, a~2 : pv0:0001, a~3 : pv0:0001, and

a~4 : pv0:0001. We can thus reject the null-hypothesis H0 at

high levels of confidence for each a level, and conclude that the

entries of M ’ are indeed related to the AAT classifications of the

journals vi,vj

� �
thereby corroborating the validity of M ’ at least to

the degree that the AAT can be considered a valid taxonomy.

Fig. 6 provides summary of the above mentioned procedure.

At a~1 level the AAT distinguishes between 4 classifications:

natural sciences, social sciences, humanities and interdisciplinary

science. The null-hypothesis H0 was rejected at this level

indicating a statistically significant relation between journal

relations in M ’ and the AAT classifications of the corresponding

journals. To visually illustrate the overlap between journal

relations in M ’ and their AAT classifications at a~1, we assigned

each journal a color according to its a~1 classification. The

natural sciences were assigned the color blue, while the social

sciences and humanities combined were assigned the color yellow.

Since only a small fraction of journals (3%) were classified as inter-

disciplinary they were colored gray along with all other journals

that could not be classified.

Fig. 7 results from this procedure; it shows the overlap between

the AAT subject classifications and the map’s layout of journals in

the mentioned hub, rim and spokes, confirming that the visual

separation of these domain effectively follows their separation

according to the AAT subject classification.

The map shown in Fig. 7 also shows blue circles connected to

journal in the central yellow hub, and yellow circles connected to

journals in the blue rim. These discrepancies indicate a divergence

between the AAT classification scheme compiled by experts vs. how

journals are connected in the map according to M ’, i.e. user

Table 6. Distance from AAT root (a) and number of
classifications Nc at that level. Each a produces a finer-grained
separation of scientific disciplines.

Distance (a) Nc Example classifications

1 4 Natural sciences, social sciences,
humanities, and interdisciplinary
sciences, …

2 8 Biology, chemistry, physics, …

3 31 Classics, communication, engineering,
…

4 195 Allergy, anesthesiology, applied
linguistics, …

doi:10.1371/journal.pone.0004803.t006
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clickstreams. For example, the AAT assigns numerous journals in

biology, neurology and hydrology to the social sciences and

humanities whereas their connections in M ’ place them within the

cluster of natural sciences (rim, 6PM). Conversely, several journals in

clinical pharmacology and statistics are assigned to the natural

sciences by the AAT although their connections place them within

the cluster of social science and humanities journals (hub, 10PM).

Psychology (rim, hub 8PM) is an example of a domain whose

connections place it on the intersection of the social sciences and

natural sciences. Psychology journals are nearly equally classified

within both the natural sciences and the social sciences by the AAT.

Future Research
This article seeks to address a basic methodological question:

can accurate maps of science be derived from clickstream data?

Our maps are the first of their kind and reveal numerous features

of scientific activity. However, several pertinent issues require

further study, but were outside the scope of this article.

First, users’ clickstreams can be shaped by various navigation

patterns. Users can follow citation links, follow the results of full-

text searches, download articles on the basis of social recommen-

dations, etc. Our clickstream map is thus necessarily the result of

an overlay of an unknown combination of such navigation

patterns. An analysis of the divergence between maps derived

from usage, citation and text mining data might disambiguate the

many influences that shape clickstream maps.

Second, when users navigate scholarly web portals their

behavior will be shaped by the interfaces of the particular web

portal [29]. In this paper we attempted to minimize such

influences by aggregating usage log data from a variety of web

portals. However, more research is necessary to determine the

precise influence of interface effects on the creation of maps of

science from clickstream data. In addition, the usefulness of

various interaction types as indicators of user interest merits

further investigation. For example, are full-text downloads

stronger indicators of user interests than requests to view an

article’s abstract?

Third, we have adopted a lowest common denominator

approach to building a clickstream model under first-order

Markov Chain assumptions. Scholarly behavior may very well

be more goal-oriented and less sporadic than web traffic. Our

clickstream data lends itself well to tracing higher-order regular-

ities in usage behavior. An investigation of models of usage

behavior under various Markov assumptions and parameters will

thus be an interesting venue for future research. Given our

particular visualization methodology, i.e. network visualizations of

pair-wise connected journals, it is however not certain that higher-

order Markov models of our clickstream data will necessarily

provide more accurate maps of science.

Finally, the promise of the deriving maps of science from usage

log data lies in its ability to track scientific behavior as it takes place

and track contemporary trends in scientific activity. Therefore

future research will focus on a longitudinal, comparative analysis

between citation maps and usage maps to determine the parameters

of the relationship between usage and citation behavior. This

however requires the collection, aggregation and analysis of

additional usage and citation data which is forthcoming.

Conclusion
Several web enterprises have successfully used clickstream data

as a means to enhance their impact, for example through the

introduction of recommender systems. Clickstream data of

scholarly web portals have thus far not received significant

attention. This is remarkable since the map of science that we

described here, as well as other findings of our MESUR project

[13], strongly suggest that scholarly logs hold valuable information

about the dynamics of scholarship.

Log datasets have attractive characteristics when compared to

citation datasets: they can be aggregated to cover all scholarly

disciplines, and they reflect the activities of a broader scholarly

community. But, most importantly, the immediacy of log datasets

offers the possibility to study the dynamics of scholarship in real-

time, not with a multi-year delay, as is currently the case with

citation data. The resulting potential for a wide variety of analysis

of the structure and dynamics of scholarship, such as trend analysis

and prediction [30], should not be underestimated.

There can exist stark differences between what people claim

they do and what they actually do [31]. This also applies to the

distinction between citing behavior and online information seeking

behavior. The first is a public and explicit expression of influence

by scholarly authors, whereas the latter results from the private

navigation behavior of scholarly users of web portals. This

distinction leads to different insights regarding scholarly activity

depending on whether it is mapped on the basis of citation data

versus scholarly log data. Our map of science derived from

clickstream data may thus run counter to accepted wisdom which

is at this point mostly based on citation data, yet it offers a first-

ever glimpse of this scholarly terra incognita.

Our map represents the structure of scholarly activity from an

observational perspective, not from a prescriptive or motivational

one. User interactions with scholarly web portals are shaped by

many constraints, including citation links, search engine results,

and user interface features. In this paper we do not attempt to

explain or motivate these interactions, but merely to demonstrate

Figure 6. Cross-validating the map structure given by M’ to journal relationships derived from AAT journal classifications, i.e.
matrix Aa.
doi:10.1371/journal.pone.0004803.g006
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how their overall structure can be charted and described from

clickstream maps of science.

Maps constructed from clickstream data can serve numerous

functions. Like citation maps they provide a means to visually

assess the relationships between various domains and journals.

However, clickstream maps of science can offer an immediate

perspective on what is taking place in science and can thus aid the

detection of emerging trends, inform funding agencies, and aid

researchers in exploring the interdisciplinary relationships between

various scientific disciplines. Clickstream maps can furthermore be

used as the basis for exploration and recommendation services that

rank journals according to the various parameters of network

topology, so that researchers can identify influential journals in any

particular domain of interest.

Scholarly log datasets still present some significant challenges.

There is no established framework for the aggregation of datasets

across web portals, there are no standards for recording logs, or for

the determination of what exactly constitutes an expression of

interest in a specific article. There are privacy concerns regarding

users of web portals and concerns regarding the sharing of what

ultimately is business intelligence by operators of web portals. And

there is an understanding that clickstreams can be manipulated. As

Figure 7. Cross-validating the map of science’s layout by retrieving each journal’s top-level AAT classification (natural sciences vs.
social sciences and humanities). This map colors journals according to whether the AAT classifies them as either social sciences and humanities
journals (yellow) vs. natural science journals (blue). Highly connected clusters corresponding to biology and psychology contain a mix of journals
classified in either the social and natural sciences.
doi:10.1371/journal.pone.0004803.g007
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a matter of fact, the incentives to do so would increase if metrics

for the assessment of impact of articles, journals, authors,

departments and institutions derived from log data would become

used as an addition to the established citation-based impact

metrics. Determining the feasibility of such novel metrics is of

significant importance to the scholarly community and has thus

become the objective of several research initiatives including the

MESUR project (http://www.mesur.org/).
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