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Abstract—Networked systems are essential to the function of
modern society and the consequences of damage to networks
can be severe. Assessing the performance of a network is an
important step for recovering damaged networks and designing
reliable networks. Some of the key general indicators of network
performance are connectivity, distance between node pairs, and
number of alternative routes. We focus on sensor networks with a
topology modeled by a class of random geometric graphs (RGGs).
In order to evaluate survivability and reliability, we consider
two types of failure modes in a RGG: uniform and localized
node failures. Since network performance is multi-faceted, and
assessment can be time constrained, we introduce four measures,
each of which can be computed in polynomial time, to estimate
performance of a damaged RGG. Theoretical analysis of these
four measures is challenging, especially when the underlying
graph becomes disconnected. The focus of this paper is to
conduct simulation experiments on several measures of network
performance through the temporal process of node failures.
Together with the empirical results the performance measures
are analyzed and compared in order to provide understanding
of the two different failure scenarios in a RGG.

I. INTRODUCTION

Advances in sensor technology have enabled a wide range
wireless sensor network applications with sensors distributed
in the field using decentralized control and communication
algorithms. These applications include battlefield surveillance,
physical structure monitoring, and environmental monitor-
ing [1]–[3]. Analyzing the reliability of communication in
these networks has become an active research area, and
measuring and designing performance is a major goal.

In sensor networks, edges represent the communication
channels, or connection, among nodes. Loss of connections
can be due to factors such as interference, weather, or field
obstacles. The sensors themselves can fail due to battery
depletion, natural disasters, harsh environmental conditions,
or even targeted attacks. Similar conditions can interfere and
even disrupt the transmissions among sensors. It is important
to understand the performance of a sensor network under such
failures.

The focus of this work is to investigate measures that
capture both local and global performance characteristics of
wireless sensor networks under different node failure sce-
narios. Our approach is to use a random geometric graph
(RGG) model in which nodes (and the incident edges) fail

randomly according to a specified probability distribution.
RGGs have been a standard tool to model and study wireless
ad-hoc and wireless sensor networks [4], [5] since they capture
the generic topological features of communication. In order
to study dynamical node failures, simpler models, such as
trees, have been used [6]. Even in simplified models it is
challenging to derive theoretical results for measuring network
performance under node failures.

The main contribution of this paper is to use simulation
to investigate network failures under less than ideal situa-
tions. We use four existing network measures to evaluate
performance and show which of those capture the effects of
uniform vs. localized node failures. Though the networks we
use are only simplified models of real-world sensor networks
these results can help to guide analysis and measurement of
failures in more realistic systems and systems where detailed
knowledge of the network is not available. In Sec. II we
review some of the previous results on network reliability
and resilience. We describe the model and failure scenarios in
Sec. III. The set of four performance measures is described in
Sec. IV, and in Sec. V we evaluate and analyze those measures
through simulations of the different stages in a failing network
and under different failure modes.

II. RELATED WORK

A. Reliability and Resilience

Determining the reliability of networks is vital for planning
communication systems, and there has been extensive research
in wired and wireless systems [7]–[10]. The well-studied
network reliability problem considers a probabilistic graph
where each edge and/or node can fail independently with a
given probability, and the goal is to calculate the probability
that communication can be established among the set of
surviving nodes. The analysis of network reliability has guided
the design of telecommunication networks, e.g., introducing
redundant links to guarantee reliability [11]–[13].

In the two-terminal problem [14]–[16], with two special
nodes called source s and destination t, the goal is to find the
probability that there exists a path between these two nodes.
AboEIFotoh et al. proved the two-terminal reliability problem
is #P-complete for RGGs and grids, and showed methods for
computing upper and lower bound of the reliability [17]. More
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general cases involve k-terminal and all-terminal reliability
problems [11], [18]–[20]. The network reliability problem was
proved to be #P-complete [11], [21], [22], but Monte Carlo
simulation and bounding methods have been demonstrated to
be two efficient ways to solve this problem [9], [13].

In [23], [24], Colbourn introduced network resilience, which
is the expected number of node pairs that can communicate
under independent edge failure. Computing the network re-
silience is #P-complete for a general and planar networks. The
resilience of n-node series-parallel networks can be computed
in O(n2) time [23].

B. Random Geometric Graphs with Node or Edge Failures

The RGG model with node or edge failures has been studied
by Dı́az et al. in [25]. Several network measures, Bisection,
Minimum Linear Arrangement, and Minimum Cutwidth, were
considered. The main results show that RGGs could tolerate
a constant edge or node failure probability while preserving
the order of magnitude of the measures, and that there is a
Hamiltonian cycle asymptotically with probability one, given
a constant (node or edge) failure probability.

Kong and Yeh studied a model of wireless networks where
the failure of a small number of nodes can cause global failure
effects [26]. In that model the node failure probability depends
on node degree and the cascading failure problem becomes
equivalent to a degree-dependent site percolation process on a
RGG.

Asymptotic results for the existence of the giant component
(the largest connected component containing a positive frac-
tion of all nodes) and complete connectivity of RGGs with
n → +∞ nodes and radius r = r(n) as a function in n are
given in [5], [27]. The transition from fully connected RGGs
to fully partitioned graphs under uniform node failures has
been analyzed in [28], and two measures were introduced:
the last connection time (the last time that the network keeps
a majority of surviving nodes connected in a single giant
component) and the first partition time (the first time that
the remaining surviving nodes are partitioned into multiple
small components). Xin and Wan have shown that these two
measures are of the same order [28].

III. MODELING NODE FAILURES

A. Random Geometric Graph Model

A wireless sensor network typically contains a large number
of randomly (in space) deployed nodes with links determined
by geometric proximity (radio range) among the nodes. That
is, a communication link between two nodes exists if the
geometric distance between them is sufficiently small to enable
successful signal transmission. The RGG model captures this
structure [4], [5]; nodes are randomly placed in Rd and
connected if they are within a threshold distance r of each
other. The geometric nature of RGGs allows us to study node
failure scenarios that are uniform and nonuniform in space.

Definition 1. (Random Geometric Graph Model [27]) For
the d-dimensional space Rd provided with the distance norm

|| · ||, let Xn = {X1,X2, . . . ,Xn} ⊂ [0,1]d be chosen inde-
pendently and uniformly at random. The random geometric
graph G(Xn;r) has the node set Xn and the edge set
E = {(Xi,X j) : i 6= j,Xi,X j ∈Xn, ||Xi−X j|| ≤ r}.

In the following we study the d = 2 dimensional case.

B. Node Failure Scenarios

To investigate how network performance changes under
node failures we consider two failure scenarios: uniform and
localized (centralized). These scenarios are of practical interest
in wireless ad-hoc networks, such as a network of autonomous
sensors that cooperatively monitors physical or environmental
conditions, or a set of PDA (personal digital assistant) de-
vices that cooperatively perform some computation. Spatially
localized failures, such as those due to a natural disaster or a
targeted attack, are modeled as centralized failures, and natural
device malfunctions are modeled with uniform failures.

For a given scenario nodes are each assigned a specified
failure probability. Network failure is simulated by stepping
in time with each node failing independently according to the
failure probability at each time. When a node fails the node
and all incident edges are removed from the current network.
We formally define the two failure scenarios as follows.

Definition 2. (Uniform Scenario) The Uniform Random Node
Failure is an i.i.d. process, where any node i in a graph fails
with the same probability pi = p, where p ∈ [0,1].

Definition 3. (Localized Scenario) The Spatially Localized
Random Node Failure is an i.i.d. process, where any node
i in a graph fails with the probability pi, which is obtained
from Gaussian distribution λ exp(−d2

i /2σ2). Here di = ||xi−
(1/2,1/2)|| is the Euclidean distance of the position xi of the
node i from the center (1/2,1/2), and λ ≤ 1 is a positive
constant.

In the Uniform Scenario the residual network at each time
step is still a RGG since nodes are failed uniformly at random.
But in the Localized Scenario after any node removal the
remaining network will not likely be a RGG. Our paper
focuses on comparing these two failure scenarios over a set
of network performances measures.

IV. PERFORMANCE MEASURES

To measure network performance under the failure scenarios
we consider several measures that incorporate local and global
properties related to connectivity and paths in the network.

A. Number of Components

If the network is not connected communication between
all pairs is not possible. We track the number of connected
components over time K(t) as the nodes fail by using a simple
breadth-first search algorithm.

In the Uniform Scenario the nodes fail uniformly at random
over time so the lifetime of a node is a geometric random
variable Geom(p). Thus the expected lifetime of any node
is E[T ] = 1/p. At the beginning r is chosen such that the
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Fig. 1. A RGG with n = 100 nodes and r = 0.06. For the spatially localized
scenario the failure probabilities are assigned according to a Gaussian dis-
tribution peaked at the center of the graph pi = λ exp(−d2

i /2σ2), σ = 0.25,
λ = 0.025, as shown by the contour lines.

original graph is connected with probability one as n →+∞.
The nodes fail independently and uniformly in space resulting
in a sequence of RGGs in time, denoted as Gt , with n(t)
nodes and with the same given radius r. We now estimate
the time step t when the graph Gt becomes disconnected.
A RGG Gt is disconnected, with the probability one as
n(t)→+∞, when n(t) and r satisfy n/(πr2) = logn−ω(1) [5],
[27]. In the Uniform Scenario n(t) is decreasing in t. Thus,
for t such that n(t) < x, where x is the unique root of
the equation logx/x = πr2 in [e,+∞), the current graph Gt
becomes disconnected with probability one as n→+∞.

In the Localized Scenario instead of pi = p we have
πi = λ exp(−d2

i /2σ2). The lifetime of a node i is still a
geometric random variable Geom(πi) with the expected value
E[Ti] = 1/πi. In this case the nodes fail independently, but not
uniformly, in space so the graphs obtained after failures are
not RGGs and the time when the graph becomes disconnected
must be estimated numerically.

B. Average Shortest Path

Wireless sensor networks generally operate under con-
strained energy environment, and the shortest path between
two nodes indicates the required energy for conveying
data [29], [30]. The average of all-pairs shortest paths provides
a global measure of the best connectivity across the whole
network. At time t let S(t) be a set of all pairs of connected
nodes. For a pair of nodes, (u,v) ∈ S(t), the length of the
shortest path d(u,v) can be calculated since u and v are in
a connected component. The simple average shortest path

measure is taken over all pairs of connected nodes,

H(t) = ∑
(u,v)∈S(t)

d(u,v)
|S(t)|

. (1)

The value of H(t) measures how well nodes communicate
pairwise in a connected component, but discounts for the size
of a component. For example a connected graph with 100
nodes that does not form a complete graph has a higher H(t)
than 50 graphs of size 2.

For a connected Gt the expected value E[H(t)] of the aver-
age shortest path can be estimated as follows. For any fixed
node u and any node v, disregarding border effects, and given
the distance ρ := ||Xu−Xv||, we have d(u,v) = Θ(ρ/r) [31].
Therefore,

E[H(t)] =
1

|S(t)|
EXn

[
∑

(u,v)∈S(t)
d(u,v)

]

=
1

|S(t)| ∑
u∈V

EXu

[
∑

v:(u,v)∈S(t)
EXn\{Xu}d(u,v)

]

=
n(t)(n(t)−1)(n(t)

2

) ·Θ
(∫ 1/

√
π

0

ρ

r
2πρdρ

)
= Θ(1/r) , (2)

where we used |S(t)| =
(n(t)

2

)
since every pair of nodes is

connected.

C. Component-Averaged Shortest Path

To reflect the fact that the network may become discon-
nected after failures we introduce a measure which com-
bines the sizes of connected components with shortest paths.
At each time t we compute the connected components
C1(t), . . . ,CK(t)(t), where K(t) is the number of connected
components at time step t. We then calculate a normalized
Wiener index [32], that is, we compute the mean value
of all-pairs shortest paths Mi(t) for each component Ci(t)
individually,

Mi(t) = ∑
u,v∈Ci(t)

d(u,v)
|Ci(t)|2

. (3)

Finally we introduce the value W (t) that combines both the
Wiener index and the size of each component,

W (t) =
K(t)

∑
i=1

Mi(t)
|Ci(t)|

. (4)

The measure W (t) penalizes effects of breaking a network
into smaller components. For a given Wiener index Mi(t) in
a component a larger component size Ci(t) results in smaller
ratio Mi(t)/|Ci(t)| and hence better (lower) W (t). We can also
see that the value Mi(t)/|Ci(t)| reflects the fraction of lost node
pairs after breaking a network into components.
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D. Communicability

Network communicability [33] was designed to reflect the
fact that communication does not always occur on the shortest
pathways in a network. Communicability is a special case of
the Katz measure [34] that computes the number of walks
(possibly with loops) through powers of the network adjacency
matrix. The shortest-path based measures can be viewed as
a special case of the communicability where only a shortest
path has positive weight and all others have weight zero.
The definition of communicability specifies factorial weights,
giving larger weight to the shorter walks and smaller weight to
the longer walks [33]. Formally, if A(t) is the adjacency matrix
of a graph Gt , then the communicability Z(t) is defined as

Z(t) = eA(t) =
+∞

∑
`=0

A(t)`

`!
. (5)

Notice that for each pair of nodes (i, j) the entry Z(t)i j
represents the weighted sum of all walks, possibly with loops,
starting at i and ending at j. In the following experiments we
plot the logarithm value of the sum of all the entries in Z(t),

Q(t) = log ∑
0≤i, j≤n(t)

Z(t)i j . (6)

Higher communicability Z(t) indicates better average perfor-
mance of the network.

V. EXPERIMENTAL RESULTS

In this section we present simulation results. It is challeng-
ing to measure the deteriorating performance in a network with
node failures and is unlikely that a single network measure
can be used to capture all of the differences in the failure
scenarios. In our experiments the four measures discussed in
the last section are used. The results show that these four
measures can compensate each other and provide some basis
for comparisons.

A. Setting and Description

In our computational experiments, a RGG G(X1000;0.06)
of 1000 nodes and the radius r = 0.06 is generated as an
underlying network (see Fig. 1). The node failure probabilities
are calculated according to a specified failure scenario as
described in Sec. III-B. Each simulation is performed over 300
discrete time steps. At time step t, nodes and incident edges
are removed from the graph independently with the specified
node failure probabilities. The removal of nodes and edges
results in a damaged network Gt at time step t. For Gt a set of
measures including the number of connected components K(t),
average shortest path H(t), component-averaged shortest path
W (t) and total network communicability Q(t) are calculated
to characterize the damage.

We analyze the failure performance with respect to the
number of nodes failed, F(t), rather than time. That allows
us to account for various values of p in the uniform failure
scenario, or λ in the localized failure scenario, together since
they only result in a rescaling of time. For example given
p̂ = α p, the probability that a node fails within t steps with

probability p is 1−(1− p)t and within t̂ steps with probability
p̂ is 1−(1−α p)t̂ . A simple calculation shows that scaling t̂ =
t log(1− p)/ log(1−α p) gives the same expected node failure
curves. Because of this rescaling we see that by plotting the
performance measures versus the number of nodes failed we
only need to consider one value of p and that the parameter
value λ is not significant (other than to set the timescale of
failures). In the localized failure scenario we still must study
various values of the parameter σ since we cannot rescale
space in the same simple way.

B. Case Analysis

Five failure scenarios are considered in the following case
analysis. The scenarios include uniform failure p = 0.005, and
localized failures with the variance σ = 0.15,0.25,0.5,0.75.
Lower variance σ indicates a smaller (more localized) high
probability failure area and larger σ produces a more spatially
uniform failure distribution. For each scenario we average
over an ensemble of 100 simulations. The resulting network
measures are plotted with respect to the number of failed nodes
F(t) in Fig. 2.
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Fig. 2. Network performance for failures in a RGG (n = 1000, r = 0.06)
under 5 different node failure scenarios. The network performance measures
are shown versus the number of failed nodes F(t) and averaged over an
ensemble of 100 simulations.

For the number of connected components, Fig. 2(a), we
see that the initially fully connected network stays connected
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in all cases until greater than 50 nodes have failed. After
that the more localized cases (σ = 0.25, σ = 0.5) break into
more components. Note that the number K(t) of connected
components is not strictly increasing in F(t). Occasionally
the nodes of a small component (possibly a single isolated
node) all fail and the component is removed from the graph
completely. As the result K(t) can decrease.

Figure 3(b) shows the averaged value H(t) over all shortest
paths in the graph. The initial value of H(t) for a fully
connected graph should be of order Θ(1/r) ≈ 17 according
to (2). Smaller H(t) indicates better network performance; as
the network is damaged H(t) will increase. The Localized Sce-
narios with σ = 0.15 and σ = 0.25 have the worst performance
with a small number of failed nodes. But for larger number
of failed nodes the Localized Scenario with σ = 0.5 becomes
comparable. In all cases the localized failures produce a larger
(worse performance) average shortest path compared with the
uniform failure scenario.

Since both connectivity and distance between all pairs of
residual nodes are important, the component-averaged shortest
path W (t) in Fig. 2(c) accounts for the size of a connected
component as well as the average path length in the compo-
nent. The value of W (t) is similar to H(t) but penalizes the
growth in the number of components. This is clearly seen in
the difference between the σ = 0.15 case and σ = 0.25 case.
The average shortest paths H(t) are similar in both cases but
with σ = 0.15 there are fewer small components compared
with σ = 0.25.

Both H(t) and W (t) are based on shortest paths. Commu-
nicability Q(t), shown in Fig. 2(d), accounts for alternative
paths with discounts on longer paths. In this case the larger
Q(t) indicates more shorter paths and the better network.
Communicability produces a different picture of the network
performance. The best performing networks are with σ = 0.15
and σ = 0.25. Though the number of components and average
shortest path lengths increase in both of these cases the failures
are concentrated in one location which develops a hole in
the center of the network with high damage and leaves an
outer ring with lower damage. This damages fewer of the
many redundant (not shortest) paths as in the other scenarios.
All the other scenarios have very similar deterioration in
communicability with respect to F(t) although the location of
failures are different. It indicates that, if all possible routes
between connected nodes are considered, the locations of
failures have little effect on communicability in those cases.

C. Global Effects and Discrete Failures

Since networks are discrete entities and all of the measures
used in this paper are discrete, averaging over a number of
samples may provide results which are not achievable in
any individual case. To show the kind of variance possible
in individual simulations we chose the first sample of 100
simulations and show, in Fig. 3, the performance measures for
some of the scenarios. Among those, scenario σ = 0.5 showed
a large jump in H(t) at about 250 nodes failed. A closer look,
see Fig. 4, revealed an interesting topological change. The

jump happened between the damaged network with 268 and
272 failed nodes. At t = 57, with 268 failed nodes, the largest
connected component forms an annulus. At t = 58 one of the
four newly failed nodes breaks the ring (see the shaded area of
Fig. 4). Some nodes then have to traverse many hops clockwise
to reach nodes which could formerly be reached at t = 57 with
only a few hops counterclockwise.
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Fig. 3. Network performance for failures in a RGG (n = 1000, r = 0.06)
under 3 different node failure scenarios for a single simulation realization. The
large jump in the average shortest path for σ = 0.5 is caused by an abrupt
global topological change in the graph (see Fig. 4).

Notice that in our measures there is no monotonicity in
any performance measure with respect to the magnitude of
damage, i.e., value of σ . In some measures the network
performance is similar in scenarios of small damage and
large damage. Intuitively small damage does not cause much
decrease in performance and large damage destroys networks
to degenerate states in which residual network scattering and
function normal as small units. For networks with differ-
ent damages, e.g., between σ = 0.25 and 0.5, and between
σ = 0.15 and 0.25, in our experiments multiple measures are
necessary to compare the network performance.

VI. SUMMARY

In this paper we analyzed performance of a network with
node failures. Uniform node failure and localized node failure
were introduced as two classes of scenarios. Four network
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Fig. 4. The damaged network for a spatially localized scenario (σ = 0.5)
showing the residual network at t = 57 with the nodes and edges failing at
t = 58 shown by dark blue circles and lines. The failure of the node shown
in the highlighted circle causes a ring to be broken and an abrupt increase in
the mean shortest path H(t).

measures were discussed to measure network performance
and were used to compensate each other. Using random
geometric graphs as the underlying network we simulated
networks with different failure scenarios over multiple time
periods and analyzed the measures. The topology of the
underlying network and magnitude of failures are important
factors to the network performance in the experiments. The
empirical results also showed the importance of using multiple
measures for assessing network performance since there is no
monotonicity in any performance measure with respect to the
failure scenarios.
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