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Abstract
We study extended oscillatory systems that respond to uniform periodic forcing at
one quarter of the forcing frequency. We find a new type of front instability where a
stationary front shifting the oscillation phase byπ decomposes into a pair of traveling
fronts each shifting the phase byπ/2. The instability designates a transition from
standing two-phase patterns, involving alternating domains with a phase shift ofπ, to
traveling four-phase patterns. A generalization of the instability to higher resonances
is conjectured.
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I INTRODUCTION

Recent experiments on the oscillating Belousov-Zhabotinsky (BZ) reaction, subjected to time-
periodic illumination, show a variety of multi-phase patterns [1]. When the forcing (illumination) fre-
quency is roughly twice the reaction’s natural frequency (2:1 resonance) two-phase patterns appear. They
consist of alternating domains with oscillation phases shifted byπ. Three-phase patterns appear in the
3:1 resonance and four-phase patterns in the 4:1 resonance [2]. The theory of forced oscillations within
the 2:1 resonance and close to the Hopf bifurcation is well established [3, 4, 5, 6]. Front solutions that
shift the phase byπ, hereafter “π-fronts” , undergo a pitchfork bifurcation as the forcing strength is de-
creased: a stationaryπ-front loses stability to a pair of stable counter-propagating front solutions. The
bifurcation, known as the nonequilibrium Ising-Bloch (NIB) bifurcation, designates a transition from
standing two-phase patterns to traveling two-phase patterns [7, 8, 9, 10] . The NIB bifurcation ap-
pears in bistable non-oscillatory systems as well. Examples include liquid crystals subjected to rotating
magnetic fields [11, 12, 13, 14], the ferrocyanide-iodate-sulfite reaction [15, 16], and catalytic surface
reactions [17].

Stationaryπ-fronts exist in higher even resonances, 4:1, 4:3, 6:1 etc., and are stable for large enough
forcing strengths. These higher resonances possess multiple stable phase states, four in the 4:1 and 4:3
resonances, six in the 6:1 resonance, and so on. Yet, in the parameter range where theπ-fronts are stable,
two-phase patterns prevail. Patterns involving all stable phases, like the four-phase spiral in Fig. 4a,
appear only whenπ-fronts become unstable. We have studied this instability and found it is a degenerate
instability where a stationaryπ-front in a 2n:1 resonance (n > 1) decomposesinto n travelingπ/n
fronts, each shifting the oscillation phase byπ/n. The instability designates a transition from standing
two-phase patterns to travelingn-phase patterns.



We analyze the decomposition instability in detail for the 4:1 resonance. Consider an extended
system that is close to a Hopf bifurcation and externally forced with a frequency about four times larger
than the Hopf frequency. The set of dynamical fieldsu describing the spatio-temporal state of the system
(e.g. set of concentrations in the BZ reaction) can be written asu = u0A exp (iωf4 t) + c.c.+ . . . , where
u0 is constant,A is a slowly varying complex amplitude,ωf is the forcing frequency and the ellipses
denote smaller contributions. The equation for the amplitudeA can be written in the following standard
form (after rescaling and shiftingarg (A) by a constant phase) [18, 19, 20, 21]:

Aτ = (µ+ iν)A+ (1 + iα)Azz − (1− iβ)|A|2A+ γ4A
∗3 , (1)

where the subscriptsτ andz denote partial derivatives with respect to time and space, and all the pa-
rameters are real. The proximity to the Hopf bifurcation impliesµ << 1. We will also be using the
following form of Eq. (1) obtained by rescaling time, space, and amplitude ast = µτ , x =

√
µ/2z, and

B = A/
√
µ:

Bt = (1 + iν0)B +
1
2

(1 + iα)Bxx − (1− iβ)|B|2B + γ4B
∗3 , (2)

whereν0 = ν/µ.

II Π AND Π/2-FRONT SOLUTIONS

Consider first the gradient version of Eq. (2) obtained by settingν0 = α = β = 0:

Bt = B +
1
2
Bxx − |B|2B + γ4B

∗3 . (3)

Equation (3) has four stable phase states for0 < γ4 < 1 shown by solid circles in Fig. 1:B±1 = ±λ
andB±i = ±iλ, whereλ = 1/

√
1− γ4 [22]. Front solutions connecting pairs of these states divide into

two groups,π-fronts andπ/2-fronts. Theπ-fronts, shown in Fig. 1 as solid lines, are given by

B−1→+1 = B+1 tanhx , B−i→+i = B+i tanhx . (4)

Theπ/2-fronts are shown in Fig. 1 by the dashed curves. For the particular parameter valueγ4 = 1/3
they have the simple forms

B+1→+i =
1
2

√
3
2

[1 + i− (1− i) tanhx] , B−1→−i = −B+1→+i ,

B−i→+1 =
1
2

√
3
2

[1− i+ (1 + i) tanhx] , B+i→−1 = −B−i→+1 ,

Additional front solutions follow from the invariance of Eq. (3) under reflection,x → −x. For exam-
ple, the symmetric counterparts ofB+i→+1(x) andB+1→−i(x) areB+1→+i(x) = B+i→+1(−x) and
B−i→+1(x) = B+1→−i(−x).



FIG. 1: Uniform states and front solutions of Eq. (3) in the complexB plane. The dots represent the four
spatially uniform phase states. The solid lines are theπ front solutions and the dashed lines are theπ/2
fronts. The thin lines in the circle are phase portraits of front solutions at successive time steps showing
the collapse of aπ front into a pair ofπ/2 fronts.

Consider now the nongradient system (2). The main effect of small nongradient terms is to make the
π/2-fronts traveling. The nongradient terms have no effect on theπ-fronts which remain stationary. To
see this assume a traveling solutionB(x − ct) of Eq. (2) and project this equation on the translational
modeB′. For π-fronts the resulting condition givesc = 0. For π/2-fronts with γ4 = 1/3 we find
|c| = 3

2(ν0 − β). A perturbation analysis aroundγ4 = 1/3 shows that this expression for the speed
remains valid for small deviations ofγ4 from 1/3.

III THE DECOMPOSITION INSTABILITY

Theπ-fronts (4) are similar to the stationaryπ-front in the 2:1 resonance and like the latter become
unstable as the forcing strengthγ4 is decreased. Stability analysis of theπ-fronts indicates that the in-
stability occurs atγ4 = 1/3. The nature of the instability, however, is quite different from the NIB
pitchfork bifurcation. It is a degenerate instability leading to asymptotic solutions that are not smooth
continuations of the unstable stationaryπ-fronts. Figure 2(left) shows a space-time plot ofarg (A) ob-
tained by numerical solution of Eq. (1). The initial unstableπ-front decomposes into a pair ofπ/2-fronts
traveling to the right or to the left depending on initial conditions. Along with theπ-front decomposition
an intermediate phase state (the grey domain) appears. This behavior is foundarbitrarily close to the
instability point, and in this sense the new solutions are not smooth continuations of theπ-front solution.
To demonstrate the decomposition instability in a reaction-diffusion system we show in Fig. 2(right) a
simulation of a forced FitzHugh-Nagumo model ([23]) exhibiting the same behavior as the amplitude
equation (1).

We analyze first the gradient version (3). Introducing the new variablesU = Re(B) + Im(B) and



FIG. 2: Space-time plots demonstrating the decomposition instability in the 4:1 resonance. An unstable
π-front decomposes into a pair ofπ/2-fronts traveling to the left (a) or to the right (b). Theπ/2-fronts
enclose grey colored domains whose oscillation phases are shifted byπ/2 with respect to the black
and white domains. Left: Solutions of Eq. (1) showingarg (A). Parameters:µ = 1.0, ν = 0.02,
γ4 = 0.3, α = β = 0. Right: Solutions of the forced FitzHugh-Nagumo equation showingarg (v/u).
Parameters:ε = 1.9, b3 = 1.8 ωf = 4.0.

V = Re(B)− Im(B) Eq. (3) is written as

Ut = U +
1
2
Uxx −

2
3
U3 − d

2
(U2 − 3V 2)U , (5a)

Vt = V +
1
2
Vxx −

2
3
V 3 − d

2
(V 2 − 3U2)V , (5b)

whered = γ4 − 1/3. At the instability point,γ4 = 1/3, the two equations decouple (sinced = 0) and

admit solutions of the formU = σ1B0(x−x1), V = σ2B0(x−x2), whereB0(x) =
√

3
2 tanhx, σ1,2 =

±1, andx1 andx2 are arbitrary constants. An intuitive understanding of this family of solutions can be
obtained by expressing these solutions back in terms of the complex amplitudeB. Forσ1 = −σ2 = 1
for example, we find

B(x;x1, x2) = B−i→+1(x− x1) +B+1→+i(x− x2)− λ .

When|x2 − x1| → ∞ this form approaches a pair of isolatedπ/2-fronts:

B ≈ B−i→+1(x− x1) x ≈ x1 , and B ≈ B+1→+i(x− x2) x ≈ x2 .



Whenx2−x1 = 0 it reduces to theπ-frontB−i→+i. Defining a mean position,ζ, and an order parameter,
χ, by

ζ =
1
2

(x1 + x2) , χ =
1
2

(x2 − x1) ,

the one-parameter family of solutions,{B̃(x; ζ, χ) | χ ∈ R}, whereB̃(x; ζ, χ) = B(x;x1, x2), repre-
sentsπ/2-front pairs with distances,2χ, ranging from zero to infinity.

For |γ4 − 1/3| = |d| � 1, the weak coupling between the two equations (5a) and (5b) induces slow
drift along the solution familyB(x;x1, x2). A pair solution is now written as

U = σ1B0[x− x1(t)] + u , V = σ2B0[x− x2(t)] + v , (6)

whereu andv are corrections of orderd. Equations of motion forx1 andx2 or for ζ andχ follow by
inserting these forms in Eqs. (5) and applying solvability conditions at orderd:

ζ̇ = 0, χ̇ = −dV/dχ . (7)

Typical forms of the potentialV for positive and negative values ofd = γ4 − 1/3 are shown in Fig. 3.
Ford = 0 V is identically zero. There is only one extremum point,χ = 0, of V for d 6= 0. Ford > 0 it is
a minimum andχ converges to zero. Pairs ofπ/2-fronts with arbitrary initial separation,x2−x1, attract
one another and eventually collapse to a singleπ-front (x1 = x2 or χ = 0). In practice, the collapse
process is noticeable only for relatively small separations. Ford < 0 the extremum point,χ = 0, is
a maximum andχ diverges to±∞. A π-front decomposes into a pair ofπ/2-fronts which repel one
another as shown in Fig. 2 for the nongradient system (1). In the gradient case bothπ andπ/2-fronts are
stationary (in the absence of interactions). Since the potentialV (χ) becomes practically flat at finiteχ
values, the pair ofπ/2-fronts do not further depart from one another at long times.

FIG. 3: The potentialV (χ). (a) Ford > 0 the extremum atχ = 0 is a minimum andχ converges to0 (a
π-front). (b) Ford < 0 the extremum is a maximum andχ diverges to±∞ (isolated pair ofπ/2-fronts).

Figure 1 shows the decomposition process of aπ-front in the complexB plane. Starting with the
B−1→+1 π-front, represented by the thick solid phase portrait, the time evolution (thin solid phase por-
traits) is toward the fixed pointB+i and the dashed phase portraits representing the pair ofπ/2-fronts



B+1→+i andB+i→−1. Because of the parity symmetryχ → −χ, an appropriate perturbation of the
initial B−1→+1 π-front could have led the dynamics toward the pairB+1→−i andB−i→−1. Notice that
for d = 0, ζ̇ = 0, χ̇ = 0, and we recover the two-parameter family of pair solutionsB(x; ζ, χ) with
arbitraryζ andχ.

The derivation of Eqs. (7) can easily be extended to the nongradient case assumingν0, α andβ are
small. Theχ equation remains unchanged. Theζ equation takes the form

σ2

σ1
ζ̇ = νFν(χ) + αFα(χ) + βFβ(χ) , (8)

whereFν , Fα, andFβ are odd functions ofχ and do not vanish whend = 0 [24]. When|χ| → ∞ the
right hand side of Eq. (8) converges to3

2(ν0−β), the speed of aπ/2-front solution of Eq. (2). Theχ = 0
solution (representing aπ-front) remains stationary (ζ̇ = 0) in the nongradient case as well. Atγ4 = 1/3
(d = 0) it loses stability and decomposes into a pair ofπ/2-fronts which approach the asymptotic speed
3
2(ν0 − β).

The degeneracy of solutions atγ4 = 1/3 is lifted by adding higher order terms to the amplitude
equation (2). These terms are smaller by a factor ofµ � 1 than the terms appearing in (2) and their
effect is noticeable only in aµ-neighborhood ofγ4 = 1/3. Apart from this small parameter range the
overall behavior does not change [24].

Numerical studies of amplitude equations for higher resonances suggest the existence ofπ-front
decomposition instabilities in2n : 1 resonances withn > 1. We refer the reader to Ref. [24, 25] for
demonstrations of decompositions instabilities within the 6:1 and 8:1 resonances.

IV THE DECOMPOSITION INSTABILITY AND PATTERN DYNAMICS

The implications of the decomposition instability on pattern dynamics follow from the potentials
drawn in Fig. 3 and from Eq. (8). Forγ4 > 1/3 (d > 0) the potential has a single minimum.π/2-
fronts attract one another and collapse into stationaryπ-fronts. As a result standing two-phase patterns
are stable. Whenγ4 is decreased below 1/3 (d < 0) the potential acquires a single maximum andπ/2-
fronts repel one another. Sinceπ/2-fronts travel, standing two-phase patterns destabilize into four-phase
traveling waves. Figure 4 shows the destabilization of a four-phase spiral wave back into a standing two-
phase pattern asγ4 is increased past 1/3. The destabilization begins at the spiral core whereπ/2-front
interactions are strongest.
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FIG. 4: Numerical solution of a two-dimensional version of Eq. (1) showing the collapse of a rotating
four-phase spiral-wave into a stationary two-phase pattern. The frames showarg(A) in thex− y plane.
(a) The initial four-phase spiral wave (computed withγ4 < 1/3). (b) The spiral core, a 4-point vertex,
splits into two 3-point vertices connected by aπ-front. (c) A two-phase pattern develops as the 3-point
vertices further separate. (d) The final stationary two-phase pattern. Parameters:γ4 = 0.6, µ = 1,
ν0 = 0.1, α = β = 0, x = [0, 64], y = [0, 64].
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