Phase-Front Solutions and Instabilities in Forced Oscillations

Christian Elphick,¹ Aric Hagberg,² and Ehud Meron³

¹Centro de Fisica No Lineal y Sistemas Complejos de Santiago, Casilla 17122, Santiago, Chile ²Theoretical Division and Center for Nonlinear Studies, MSB284, Los Alamos National Laboratory, Los Alamos,

NM 87545

³The Blaustein Institute for Desert Research and the Physics Department, Ben-Gurion University, Sede Boker Campus 84990, Israel

Abstract

We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency. We find a new type of front instability where a stationary front shifting the oscillation phase by π decomposes into a pair of traveling fronts each shifting the phase by $\pi/2$. The instability designates a transition from standing two-phase patterns, involving alternating domains with a phase shift of π , to traveling four-phase patterns. A generalization of the instability to higher resonances is conjectured.

29 July 1999

I INTRODUCTION

Recent experiments on the oscillating Belousov-Zhabotinsky (BZ) reaction, subjected to timeperiodic illumination, show a variety of multi-phase patterns [1]. When the forcing (illumination) frequency is roughly twice the reaction's natural frequency (2:1 resonance) two-phase patterns appear. They consist of alternating domains with oscillation phases shifted by π . Three-phase patterns appear in the 3:1 resonance and four-phase patterns in the 4:1 resonance [2]. The theory of forced oscillations within the 2:1 resonance and close to the Hopf bifurcation is well established [3, 4, 5, 6]. Front solutions that shift the phase by π , hereafter " π -fronts", undergo a pitchfork bifurcation as the forcing strength is decreased: a stationary π -front loses stability to a pair of stable counter-propagating front solutions. The bifurcation, known as the nonequilibrium Ising-Bloch (NIB) bifurcation, designates a transition from standing two-phase patterns to traveling two-phase patterns [7, 8, 9, 10]. The NIB bifurcation appears in bistable non-oscillatory systems as well. Examples include liquid crystals subjected to rotating magnetic fields [11, 12, 13, 14], the ferrocyanide-iodate-sulfite reaction [15, 16], and catalytic surface reactions [17].

Stationary π -fronts exist in higher even resonances, 4:1, 4:3, 6:1 etc., and are stable for large enough forcing strengths. These higher resonances possess multiple stable phase states, four in the 4:1 and 4:3 resonances, six in the 6:1 resonance, and so on. Yet, in the parameter range where the π -fronts are stable, two-phase patterns prevail. Patterns involving all stable phases, like the four-phase spiral in Fig. 4a, appear only when π -fronts become unstable. We have studied this instability and found it is a degenerate instability where a stationary π -front in a 2n:1 resonance (n > 1) decomposes into n traveling π/n fronts, each shifting the oscillation phase by π/n . The instability designates a transition from standing two-phase patterns to traveling n-phase patterns.

We analyze the decomposition instability in detail for the 4:1 resonance. Consider an extended system that is close to a Hopf bifurcation and externally forced with a frequency about four times larger than the Hopf frequency. The set of dynamical fields **u** describing the spatio-temporal state of the system (e.g. set of concentrations in the BZ reaction) can be written as $\mathbf{u} = \mathbf{u}_0 A \exp\left(i\frac{\omega_f}{4}t\right) + c.c. + \dots$, where \mathbf{u}_0 is constant, A is a slowly varying complex amplitude, ω_f is the forcing frequency and the ellipses denote smaller contributions. The equation for the amplitude A can be written in the following standard form (after rescaling and shifting $\arg(A)$ by a constant phase) [18, 19, 20, 21]:

$$A_{\tau} = (\mu + i\nu)A + (1 + i\alpha)A_{zz} - (1 - i\beta)|A|^2A + \gamma_4 A^{*3}, \qquad (1)$$

where the subscripts τ and z denote partial derivatives with respect to time and space, and all the parameters are real. The proximity to the Hopf bifurcation implies $\mu << 1$. We will also be using the following form of Eq. (1) obtained by rescaling time, space, and amplitude as $t = \mu \tau$, $x = \sqrt{\mu/2z}$, and $B = A/\sqrt{\mu}$:

$$B_t = (1+i\nu_0)B + \frac{1}{2}(1+i\alpha)B_{xx} - (1-i\beta)|B|^2B + \gamma_4 B^{*3}, \qquad (2)$$

where $\nu_0 = \nu/\mu$.

II Π AND $\Pi/2$ -FRONT SOLUTIONS

Consider first the gradient version of Eq. (2) obtained by setting $\nu_0 = \alpha = \beta = 0$:

$$B_t = B + \frac{1}{2}B_{xx} - |B|^2 B + \gamma_4 B^{*3}.$$
(3)

Equation (3) has four stable phase states for $0 < \gamma_4 < 1$ shown by solid circles in Fig. 1: $B_{\pm 1} = \pm \lambda$ and $B_{\pm i} = \pm i\lambda$, where $\lambda = 1/\sqrt{1 - \gamma_4}$ [22]. Front solutions connecting pairs of these states divide into two groups, π -fronts and $\pi/2$ -fronts. The π -fronts, shown in Fig. 1 as solid lines, are given by

$$B_{-1\to+1} = B_{+1} \tanh x$$
, $B_{-i\to+i} = B_{+i} \tanh x$. (4)

The $\pi/2$ -fronts are shown in Fig. 1 by the dashed curves. For the particular parameter value $\gamma_4 = 1/3$ they have the simple forms

$$B_{+1\to+i} = \frac{1}{2}\sqrt{\frac{3}{2}} \left[1+i-(1-i)\tanh x\right], \qquad B_{-1\to-i} = -B_{+1\to+i},$$
$$B_{-i\to+1} = \frac{1}{2}\sqrt{\frac{3}{2}} \left[1-i+(1+i)\tanh x\right], \qquad B_{+i\to-1} = -B_{-i\to+1},$$

Additional front solutions follow from the invariance of Eq. (3) under reflection, $x \to -x$. For example, the symmetric counterparts of $B_{+i\to+1}(x)$ and $B_{+1\to-i}(x)$ are $B_{+1\to+i}(x) = B_{+i\to+1}(-x)$ and $B_{-i\to+1}(x) = B_{+1\to-i}(-x)$.

FIG. 1: Uniform states and front solutions of Eq. (3) in the complex *B* plane. The dots represent the four spatially uniform phase states. The solid lines are the π front solutions and the dashed lines are the $\pi/2$ fronts. The thin lines in the circle are phase portraits of front solutions at successive time steps showing the collapse of a π front into a pair of $\pi/2$ fronts.

Consider now the nongradient system (2). The main effect of small nongradient terms is to make the $\pi/2$ -fronts traveling. The nongradient terms have no effect on the π -fronts which remain stationary. To see this assume a traveling solution B(x - ct) of Eq. (2) and project this equation on the translational mode B'. For π -fronts the resulting condition gives c = 0. For $\pi/2$ -fronts with $\gamma_4 = 1/3$ we find $|c| = \frac{3}{2}(\nu_0 - \beta)$. A perturbation analysis around $\gamma_4 = 1/3$ shows that this expression for the speed remains valid for small deviations of γ_4 from 1/3.

III THE DECOMPOSITION INSTABILITY

The π -fronts (4) are similar to the stationary π -front in the 2:1 resonance and like the latter become unstable as the forcing strength γ_4 is decreased. Stability analysis of the π -fronts indicates that the instability occurs at $\gamma_4 = 1/3$. The nature of the instability, however, is quite different from the NIB pitchfork bifurcation. It is a degenerate instability leading to asymptotic solutions that are not smooth continuations of the unstable stationary π -fronts. Figure 2(left) shows a space-time plot of arg (A) obtained by numerical solution of Eq. (1). The initial unstable π -front decomposes into a pair of $\pi/2$ -fronts traveling to the right or to the left depending on initial conditions. Along with the π -front decomposition an intermediate phase state (the grey domain) appears. This behavior is found *arbitrarily close* to the instability point, and in this sense the new solutions are not smooth continuations of the π -front solution. To demonstrate the decomposition instability in a reaction-diffusion system we show in Fig. 2(right) a simulation of a forced FitzHugh-Nagumo model ([23]) exhibiting the same behavior as the amplitude equation (1).

We analyze first the gradient version (3). Introducing the new variables U = Re(B) + Im(B) and

FIG. 2: Space-time plots demonstrating the decomposition instability in the 4:1 resonance. An unstable π -front decomposes into a pair of $\pi/2$ -fronts traveling to the left (a) or to the right (b). The $\pi/2$ -fronts enclose grey colored domains whose oscillation phases are shifted by $\pi/2$ with respect to the black and white domains. Left: Solutions of Eq. (1) showing $\arg(A)$. Parameters: $\mu = 1.0$, $\nu = 0.02$, $\gamma_4 = 0.3$, $\alpha = \beta = 0$. Right: Solutions of the forced FitzHugh-Nagumo equation showing $\arg(v/u)$. Parameters: $\epsilon = 1.9$, $b_3 = 1.8 \omega_f = 4.0$.

V = Re(B) - Im(B) Eq. (3) is written as

$$U_t = U + \frac{1}{2}U_{xx} - \frac{2}{3}U^3 - \frac{d}{2}(U^2 - 3V^2)U, \qquad (5a)$$

$$V_t = V + \frac{1}{2}V_{xx} - \frac{2}{3}V^3 - \frac{d}{2}(V^2 - 3U^2)V, \qquad (5b)$$

where $d = \gamma_4 - 1/3$. At the instability point, $\gamma_4 = 1/3$, the two equations decouple (since d = 0) and admit solutions of the form $U = \sigma_1 B_0(x - x_1)$, $V = \sigma_2 B_0(x - x_2)$, where $B_0(x) = \sqrt{\frac{3}{2}} \tanh x$, $\sigma_{1,2} = \pm 1$, and x_1 and x_2 are arbitrary constants. An intuitive understanding of this family of solutions can be obtained by expressing these solutions back in terms of the complex amplitude B. For $\sigma_1 = -\sigma_2 = 1$ for example, we find

$$B(x; x_1, x_2) = B_{-i \to +1}(x - x_1) + B_{+1 \to +i}(x - x_2) - \lambda$$

When $|x_2 - x_1| \to \infty$ this form approaches a pair of isolated $\pi/2$ -fronts:

$$B \approx B_{-i \to +1}(x - x_1)$$
 $x \approx x_1$, and $B \approx B_{+1 \to +i}(x - x_2)$ $x \approx x_2$

When $x_2 - x_1 = 0$ it reduces to the π -front $B_{-i \to +i}$. Defining a mean position, ζ , and an order parameter, χ , by

$$\zeta = \frac{1}{2}(x_1 + x_2), \qquad \chi = \frac{1}{2}(x_2 - x_1),$$

the one-parameter family of solutions, $\{\tilde{B}(x;\zeta,\chi) \mid \chi \in R\}$, where $\tilde{B}(x;\zeta,\chi) = B(x;x_1,x_2)$, represents $\pi/2$ -front pairs with distances, 2χ , ranging from zero to infinity.

For $|\gamma_4 - 1/3| = |d| \ll 1$, the weak coupling between the two equations (5a) and (5b) induces slow drift along the solution family $B(x; x_1, x_2)$. A pair solution is now written as

$$U = \sigma_1 B_0[x - x_1(t)] + u, \qquad V = \sigma_2 B_0[x - x_2(t)] + v, \tag{6}$$

where u and v are corrections of order d. Equations of motion for x_1 and x_2 or for ζ and χ follow by inserting these forms in Eqs. (5) and applying solvability conditions at order d:

$$\dot{\zeta} = 0, \qquad \dot{\chi} = -dV/d\chi.$$
 (7)

Typical forms of the potential V for positive and negative values of $d = \gamma_4 - 1/3$ are shown in Fig. 3. For d = 0 V is identically zero. There is only one extremum point, $\chi = 0$, of V for $d \neq 0$. For d > 0 it is a minimum and χ converges to zero. Pairs of $\pi/2$ -fronts with arbitrary initial separation, $x_2 - x_1$, attract one another and eventually collapse to a single π -front ($x_1 = x_2$ or $\chi = 0$). In practice, the collapse process is noticeable only for relatively small separations. For d < 0 the extremum point, $\chi = 0$, is a maximum and χ diverges to $\pm \infty$. A π -front decomposes into a pair of $\pi/2$ -fronts which repel one another as shown in Fig. 2 for the nongradient system (1). In the gradient case both π and $\pi/2$ -fronts are stationary (in the absence of interactions). Since the potential $V(\chi)$ becomes practically flat at finite χ values, the pair of $\pi/2$ -fronts do not further depart from one another at long times.

FIG. 3: The potential $V(\chi)$. (a) For d > 0 the extremum at $\chi = 0$ is a minimum and χ converges to 0 (a π -front). (b) For d < 0 the extremum is a maximum and χ diverges to $\pm \infty$ (isolated pair of $\pi/2$ -fronts).

Figure 1 shows the decomposition process of a π -front in the complex B plane. Starting with the $B_{-1 \rightarrow +1} \pi$ -front, represented by the thick solid phase portrait, the time evolution (thin solid phase portraits) is toward the fixed point B_{+i} and the dashed phase portraits representing the pair of $\pi/2$ -fronts

 $B_{+1\to+i}$ and $B_{+i\to-1}$. Because of the parity symmetry $\chi \to -\chi$, an appropriate perturbation of the initial $B_{-1\to+1} \pi$ -front could have led the dynamics toward the pair $B_{+1\to-i}$ and $B_{-i\to-1}$. Notice that for d = 0, $\dot{\zeta} = 0$, $\dot{\chi} = 0$, and we recover the two-parameter family of pair solutions $B(x;\zeta,\chi)$ with arbitrary ζ and χ .

The derivation of Eqs. (7) can easily be extended to the nongradient case assuming ν_0 , α and β are small. The χ equation remains unchanged. The ζ equation takes the form

$$\frac{\sigma_2}{\sigma_1}\dot{\zeta} = \nu F_\nu(\chi) + \alpha F_\alpha(\chi) + \beta F_\beta(\chi), \qquad (8)$$

where F_{ν} , F_{α} , and F_{β} are odd functions of χ and do not vanish when d = 0 [24]. When $|\chi| \to \infty$ the right hand side of Eq. (8) converges to $\frac{3}{2}(\nu_0 - \beta)$, the speed of a $\pi/2$ -front solution of Eq. (2). The $\chi = 0$ solution (representing a π -front) remains stationary ($\dot{\zeta} = 0$) in the nongradient case as well. At $\gamma_4 = 1/3$ (d = 0) it loses stability and decomposes into a pair of $\pi/2$ -fronts which approach the asymptotic speed $\frac{3}{2}(\nu_0 - \beta)$.

The degeneracy of solutions at $\gamma_4 = 1/3$ is lifted by adding higher order terms to the amplitude equation (2). These terms are smaller by a factor of $\mu \ll 1$ than the terms appearing in (2) and their effect is noticeable only in a μ -neighborhood of $\gamma_4 = 1/3$. Apart from this small parameter range the overall behavior does not change [24].

Numerical studies of amplitude equations for higher resonances suggest the existence of π -front decomposition instabilities in 2n: 1 resonances with n > 1. We refer the reader to Ref. [24, 25] for demonstrations of decompositions instabilities within the 6:1 and 8:1 resonances.

IV THE DECOMPOSITION INSTABILITY AND PATTERN DYNAMICS

The implications of the decomposition instability on pattern dynamics follow from the potentials drawn in Fig. 3 and from Eq. (8). For $\gamma_4 > 1/3$ (d > 0) the potential has a single minimum. $\pi/2$ -fronts attract one another and collapse into stationary π -fronts. As a result standing two-phase patterns are stable. When γ_4 is decreased below 1/3 (d < 0) the potential acquires a single maximum and $\pi/2$ -fronts repel one another. Since $\pi/2$ -fronts travel, standing two-phase patterns destabilize into four-phase traveling waves. Figure 4 shows the destabilization of a four-phase spiral wave back into a standing two-phase pattern as γ_4 is increased past 1/3. The destabilization begins at the spiral core where $\pi/2$ -front interactions are strongest.

ACKNOWLEDGMENTS

We thank J. Guckenheimer, B. Krauskopf, H.L. Swinney, A. Lin, and M. Bertram for helpful discussions. This study was supported in part by grant No. 95-00112 from the US-Israel Binational Science Foundation (BSF) and by the Department of Energy, under contract W-7405-ENG-36.

FIG. 4: Numerical solution of a two-dimensional version of Eq. (1) showing the collapse of a rotating four-phase spiral-wave into a stationary two-phase pattern. The frames show $\arg(A)$ in the x - y plane. (a) The initial four-phase spiral wave (computed with $\gamma_4 < 1/3$). (b) The spiral core, a 4-point vertex, splits into two 3-point vertices connected by a π -front. (c) A two-phase pattern develops as the 3-point vertices further separate. (d) The final stationary two-phase pattern. Parameters: $\gamma_4 = 0.6$, $\mu = 1$, $\nu_0 = 0.1$, $\alpha = \beta = 0$, x = [0, 64], y = [0, 64].

REFERENCES

- [1] V. Petrov, Q. Ouyang, and H. L. Swinney, Nature 388, 655 (August 1997).
- [2] A. Lin and H. L. Swinney, Center for Nonlinear Dynamics, UT Austin, personal communication.
- [3] P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz, Phys. Rev. Lett. 65, 1352 (1990).
- [4] P. Coullet and K. Emilsson, Physica D 61, 119 (1992).
- [5] B. A. Malomed and A. A. Nepomnyashcy, Europhys. Lett. 27, 649 (1994).
- [6] D. Walgraef, Spatio-Temporal Pattern Formation (Springer-Verlag, New York, 1997).
- [7] A. Hagberg and E. Meron, Nonlinearity **7**, 805 (1994), http://math.lanl.gov/People/aric/Papers/frontbif/.
- [8] H. Ikeda, M. Mimura, and Y. Nishiura, Nonl. Anal. TMA 13, 507 (1989).
- [9] M. Bode, A. Reuter, R. Schmeling, and H.-G. Purwins, Phys. Lett. A 185, 70 (1994).
- [10] C. Elphick, A. Hagberg, E. Meron, and B. Malomed, Phys. Lett. A 230, 33 (1997), http://math.lanl.gov/People/aric/Papers/forced/.
- [11] K. B. Migler and R. B. Meyer, Physica D 71, 412 (1994).
- [12] T. Frisch, S. Rica, P. Coullet, and J. M. Gilli, Phys. Rev. Lett. 72(10), 1471 (1994).
- [13] S. Nasuno, N. Yoshimo, and S. Kai, Phys. Rev. E 51, 1598 (1995).
- [14] T. Frisch and J. M. Gilli, J. Phys. II France 5, 561 (1995).
- [15] K. J. Lee and H. L. Swinney, Phys. Rev. E 51(3), 1899 (1995).
- [16] D. Haim, G. Li, Q. Ouyang, W. D. McCormick, H. L. Swinney, A. Hagberg, and E. Meron, Phys. Rev. Lett. 77(1), 190 (July 1996), http://math.lanl.gov/People/aric/Papers/breathing/.

- [17] G. Haas, M. Bär, I. G. Kevrekidis, P. B. Rasmussen, H.-H. Rotermund, and G.Ertl, Phys Rev. Lett. 75, 3560 (1995).
- [18] A. C. Newell, in *Lectures in Applied Mathematics* (American Mathematical Society, Providence, RI, 1974), vol. 15, p. 157.
- [19] J. M. Gambaudo, J. Diff. Eq. 57, 172 (1985).
- [20] C. Elphick, G. Iooss, and E. Tirapegui, Phys. Lett. A 120, 459 (1987).
- [21] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993).
- [22] B. Krauskopf, *On the 1:4 Resonance Problem*, Ph.D. thesis, Rijksuniversiteit Groningen (June 1995).
- [23] The model is $u_t = u (1 + b_3 \sin(\omega_f t))u^3 v + u_{xx}, v_t = \epsilon(u v/2).$
- [24] C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. E **59**(5), 5285 (1999), http://math.lanl.gov/People/aric/Papers/fcgl2/.
- [25] C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. Lett. **80**(22), 5007 (1998), http://math.lanl.gov/People/aric/Papers/fcgl/.