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Abstract

good solutions to complex problems. In many examples, individuals trying to solve

superior global solution. This suggests that there may be general principles of in-
formation aggregation and coordination that can transcend particular applications.
Here we show that the general structure of this problem can be cast in terms of infor-
mation theory and derive mathematical conditions that lead to optimal multi-agent
searches. Specifically, we illustrate the problem in terms of local search algorithms
for autonomous agents looking for the spatial location of a stochastic source. We
explore the types of search problems, defined in terms of the statistical properties
of the source and the nature of measurements at each agent, for which coordination
among multiple searchers yields an advantage beyond that gained by having the
same number of independent searchers. We show that effective coordination corre-
sponds to synergy and that ineffective coordination corresponds to independence as
defined using information theory. We classify explicit types of sources in terms of
their potential for synergy. We show that sources that emit uncorrelated signals pro-
vide no opportunity for synergetic coordination while sources that emit signals that
are correlated in some way, do allow for strong synergy between searchers. These
general considerations are crucial for designing optimal algorithms for particular
search problems in real world settings.

1 Introduction

The ability of agents to share information and to coordinate actions and decisions
can provide significant practical advantages in real-world searches. Whether the tar-
get is a person trapped by an avalanche or a hidden cache of nuclear material, being
able to deploy multiple autonomous searchers can be more advantageous and safer
than sending human operators. For example, small autonomous, possibly expend-
able robots could be utilized in harsh winter climates or on the battlefield.

Social computation, whether in the form of searches performed by
swarms of agents or collective predictions of markets, often supplies remarkably

a problem locally can aggregate their information and work together to arrive at a
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In some problems, e.g. locating a cellular telephone via the signal strength at sev-
eral towers, there is often a simple geometrical search strategy, such as triangulation,
which works effectively. However, in search problems where the signal is stochas-
tic or no geometrical solution is known, e.g. searching for a weak scent source in
a turbulent medium, new methods need to be developed. This is especially true
when designing autonomous and self-repairing algorithms for robotic agents [1].
Information theoretical methods provide a promising approach to develop objective
functions and search algorithms to fill this gap. In a recent paper, Vergassola et al.
demonstrated that infotaxis, which is motion based on expected information gain,
can be a more effective search strategy when the source signal is weak than conven-
tional methods such as moving along the gradient of a chemical concentration [2].
The infotaxis algorithm combines the two competing goals of exploration of pos-
sible search moves and exploitation of received signals to guide the searcher in the
direction with the highest probability of finding the source [3].

To improve the efficiency of search by using more than one searcher requires
determining under what circumstances a collective (parallel) search is better (faster)
than the independent combination of the individual searches. Much heuristic work,
anecdotally inspired by strategies in social insects and flocking birds [4, 5], has
suggested that collective action should be advantageous in searches in real world
complex problems, such as foraging, spatial mapping, and navigation. However, all
approaches to date rely on simple heuristics that fail to make explicit the general
informational advantages of such strategies.

The simplest extension of infotaxis to collective searches is to have multiple
independent (uncoordinated) searchers that share information; this corresponds in
general to a linear increase in performance with the number of searchers. How-
ever, given some general knowledge about the structure of the search, substantial
increases in the search performance of a collective of agents can be achieved, often
leading to exponential reduction in the search effort, in terms of time, energy or
number of steps [6, 7, 8]. In this work we explore how the concept of information
synergy can be leveraged to improve infotaxis of multiple coordinated searchers.
Synergy corresponds to the general situation when measuring two or more variables
together with respect to another (the target’s signal) results in a greater informa-
tion gain than the sum of that from each variable separately [9, 10]. We identify the
types of spatial search problems for which coordination among multiple searchers is
effective (synergetic), as well as when it is ineffective, and corresponds to indepen-
dence. We find that classes of statistical sources, such as those that emit uncorrelated
signals (e.g. Poisson processes) provide no opportunity for synergetic coordination.
On the other hand, sources that emit particles with spatial, temporal, or categorical
correlations, do allow for strong synergy between searchers that can be exploited
via coordinated motion. These considerations divide collective search problems into
different general classes and are crucial for designing effective algorithms for par-
ticular applications.
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2 Information theory approach to stochastic search

Effective and robust search methods for the location of stochastic sources must bal-
ance the competing strategies of exploration and exploitation [3]. On the one hand,
searchers must exploit measured cues to guide their optimal next move. On the other
hand, because this information is statistical, more measurements need to typically be
made that are guided by different search scenarios. Information theory approaches
to search achieve this balance by utilizing movement strategies that increase the ex-
pected information gain, which in turn is a functional of the many possible source
locations. In this section we define the necessary formalism and use it to set up the
general structure of the stochastic search problem.

2.1 Synergy and Redundancy

First we define the concepts of information, synergy and redundancy explicitly. Con-
sider the stochastic variables Xi, i = 1 . . .n. Each variable Xi can take on specific
states, denoted by the corresponding lowercase letter, that is X can take on a set
of states {x}. For a single variable X the Shannon entropy (henceforth “entropy”) is
S(X) =− x P(x) log2 P(x), where P(x) is the probability that the variable X take on
the value x [11]. The entropy is a measure of uncertainty about the state of X , there-
fore entropy can only decrease or remain unchanged as more variables are measured.
The conditional entropy of a variable X1 given a second variable X2 is S(X1|X2) =
− x1,x2

P(x1,x2) log2(P(x1,x2)/P(x2)) ≤ S(X1). The mutual information between
two variables, which plays an important role in search strategy, is defined as the
change in entropy when a variable is measured I(X1,X2) = S(X1)− S(X1|X2) ≥ 0.
These definitions can be directly extended to multiple variables. For 3 variables, we
make the following definition [12]: R(X1,X2,X3)≡ I(X1,X2)− I({X1,X2}|X3). This
quantity measures the degree of “overlap” in the information contained in variables
X1 and X2 with respect to X3. If R(X1,X2,X3) > 0, there is overlap and X1 and X2

are said to be redundant with respect to X3. If R(X1,X2,X3) < 0, more informa-
tion is available when these variables are considered together than when considered
separately. In this case X1 and X2 are said to be synergetic with respect to X3. If
R(X1,X2,X3) = 0, X1 and X2 are independent [9, 10].

2.2 Two-dimensional spatial search

We now formulate the two-dimensional stochastic search problem. We consider, for
simplicity, the case of two searchers seeking to find a stochastic source located in a
finite two-dimensional plane. This is a generalization of the single searcher formal-
ism presented in Ref. [2]. At any time step, the searchers have positions {ri}, i = 1,2
and observe some number of particles {hi} from the source. The searchers do not get
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information about the trajectories or speed of the particles; they only get informa-
tion if a particle was observed or not. Therefore simple geometrical methods such as
triangulation are not possible. Let the variable R0 correspond to all the possible lo-
cations of the source r0. The searchers compute and share a probability distribution
P(t)(r0) for the source at each time index t. Initially the probability for the source
is assumed to be to be uniform. After each measurement {hi,ri}, the searchers up-
date their estimated probability distribution of source positions via Bayesian infer-
ence. First the conditional probability P(t+1)(r0|{hi,ri}) ≡ P(t)(r0)P({hi,ri}|r0)/A,
is calculated, where A is a normalization over all possible source locations as re-
quired by Bayesian inference. This is then assimilated via Bayesian update so that
P(t+1)(r0) ≡ P(t+1)(r0|{hi,ri}).

If the searchers do not find the source at their present locations they choose the
next local move using an infotaxis step to maximize the expected information gain.
To describe the infotaxis step we first need some definitions. The entropy of the
distribution P(t)(r0) at time t is defined as S(t)(R0) ≡ − r0

P(t)(r0) log2 P(t)(r0). In
terms of a specific measurement {hi,ri} the entropy is (before the Bayesian up-

date) S(t)
{hi,ri}

(R0) ≡ − r0
P(t)(r0|{hi,ri}) log2 P(t)(r0|{hi,ri}). We define the differ-

ence between the entropy at time t and the entropy at time t +1 after a measurement

{hi,ri} to be S(t+1)
{hi,ri}

≡ S(t+1)
{hi,ri}

(R0)−S(t)(R0).

Initially the entropy is at its maximum for a uniform prior: S(0)(R0) = log2 Ns,
where Ns is the number of possible locations for the source in a discrete space. For
each possible joint move {ri}, the change in expected entropy S is computed and
the move with the minimum (most negative) S is executed. The expected entropy
is computed by considering the reduction in entropy for all of the possible joint
moves

S =−

[

i

P(t)(R0 = ri)

]

S(t)(R0)

+

[

1−
i

P(t)(R0 = ri)

]

S(t+1)
{hi,ri}

h1,h2

[

r0

P(t)(r0)P
(t+1)({hi,ri}|r0)

]

. (1)

The first term in Eq. (1) corresponds to one of the searchers finding the source in
the next time step (the final entropy will be S = 0 so S = −S). The second term
considers the reduction in entropy for all possible measurements at the proposed lo-
cation, weighted by the probability of each of those measurements. The probability
of the searchers obtaining the measurement {hi} at the location {ri} is given by the
trace of the probability P(t+1)({hi,ri}|r0) over all possible source locations.
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3 Correlated stochastic source and synergy of searchers

The expected entropy reduction S is calculated for joint moves of the searchers,
that is, all possible combinations of individual moves. Compared with multiple in-
dependent searchers this calculation incurs some extra computational cost. Thus,
when designing a search algorithm, it is important to know whether an advantage
(synergy) can be gained by considering joint moves instead of individual moves.
Since the search is based on optimizing the maximum information gain we need to
explore if joint moves are synergetic or redundant. In this section we will show how
correlations in the source affect the synergy and redundancy of the search.

In the following we will assume there are no radial correlations between parti-
cles emitted from the source and that the probability of detecting particles decays
with distance to the source. For each particle emitted from the source, the searcher
i has an associated actual probability i(r0) of catching the particle. The probabil-
ity i(r0) is defined in terms of a possible source location r0 and the location ri of
searcher i: i(r0) = Bexp(−|ri − r0|

2), where {ri} is the set of all the searcher po-
sitions and B is a normalization constant. Note that this is just the radial component
of the probability; if there are angular correlations these are treated separately. We
may now write R, as a function of the variables R0, H1, and H2, in terms of the
conditional probabilities:

R(H1,H2,R0) =
h1,h2,r0

P(r0,h1,h2) log2
P(h1|r0)P(h2|r0)P(h2|h1)

P(h2)P(h1,h2|r0)
. (2)

It is sufficient for R 6= 0 that the argument of the logarithm differs from 1. This
can be achieved even if measurements are conditionally independent (redundancy),
mutually independent (synergy), or when neither of these conditions apply.

3.1 Uncorrelated signals: Poisson source

First, consider a source which emits particles according to a Poisson process with
known mean 0 so emitted particles are completely uncorrelated spatially and tem-
porally. If searcher 1 is able to get a particle that has already been detected by
searcher 2, it is clear that the searchers are completely independent and there is no
chance of synergy. It may appear at first that implementing a simple exclusion where
two searchers cannot get the same particle would be enough to foster cooperation
between searchers. We will instead show that it is the Poisson nature of the source
that makes synergy impossible, even under mutual exclusion of the measurements.

The probability of the measurement {hi} is given by

P({hi,ri}|r0) =
hs= i hi

P0(hs, 0)M({ i(r0)},{hi},hs). (3)
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The sum is over all possible values of hs, weighted by the Poisson probability mass
function with the known mean 0. M is the probability mass function of the multi-
nomial distribution for that measurement; it handles the combinatorial degeneracy
and the exclusion. It is not difficult to show by summing over hs that P({hi,ri}|r0)
can be written as a product of Poisson distributions with effective means 0 i,

P({hi,ri}|r0) =
i hi

0 e− 0 i i
i

hi
i

i(hi!)
=

i
P0(hi, 0 i). (4)

At this point we consider whether a search like this can be synergetic for the 2
searcher case. Eq. (4) shows that the two measurements are conditionally inde-
pendent and therefore P(h1,h2|r0) = P(h1|r0)P(h2|r0). It follows from Eq. (2) that
R(H1,H2,R0) = I(H1,H2) ≥ 0. Therefore the searchers are either redundant (if the
measurements interfere with each other) or independent with respect to the source.
Synergy is impossible so that searchers gain no advantage by considering joint
moves. The only advantage of coordination comes possibly from avoiding positions
that lead to a decrease in performance of the collective due to competition for the
same signal.

3.2 Correlated signals: angular biases

We now consider a source that emits particles that are spatially correlated. We as-
sume for simplicity that at each time step the source emits 2 particles. The first
particle is emitted at a random angle h1 chosen uniformly from [0,2 ). The second
particle is emitted at an angle h2 with probability

P( h2 | h1) = Dexp [−(| h1 − h2 |− )2/ 2] ≡ f , (5)

where D is a normalization factor. The searchers are assumed to know the variance
for simplicity; this is a reasonable assumption if the searchers have any informa-

tion about the nature of the target (just as for the Poisson source they had statisti-
cal knowledge of the parameter 0). The calculation of the conditional probability
P({hi,ri}|r0) requires some care. Specifically, this quantity is the probability of the
measurement {hi}, assuming a certain source position. Since there are 2 particles
emitted at each time step, there are 4 possible cases, each with a different probabil-
ity, as shown in Table 1. Here h1 and h2 are calculated from r1 and r2, respectively:

hi ≡ arctan
r0,y−ri,y
r0,x−ri,x

. Note that the i are functions of r0. The coefficient D is cho-

sen such that 1
N h2 r2

P({h1,h2,r1,r2}|r0) = P({h1,r1}|r0), corresponding to the
normalization condition 1

N r2
f = 1.

Figure 1 shows the value of R(H1,H2,R0) and the values of the mutual infor-
mations I(H1,H2) and I(H1,H2|R0) for each possible position r2 of searcher 2. We
assume a nonuniform, peaked probability distribution for the source [Figure 1(b)]
and that the position of searcher 1 is fixed. In this setup we see that R <= 0 for ev-
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{h1,h2} {1,1} {1,0} {0,1} {0,0}
P({h1 , r1}|r0) 1 1 1− 1 1− 1
P({h2 , r2}|r0) 2 2 1− 2 1− 2

P({h1 ,h2, r1, r2}|r0) 1 2 f 2
1 f

(

1− 2 f
)

2 f
(

1− 1 f
)

(1− 1 f )(1− 2 f )

Table 1 Probability calculation for all possible states in the correlated source search. Here i(r0) =
Bexp (−|ri − r0|

2) is written as i to save space.

ery possible position of searcher 2 indicating that only synergy is possible. This is a
consequence of the angular spatial correlation between the particles emitted by the
source. The synergy is highest near the source location, where the source probability
is strongly peaked, and falls off rapidly away from the source location. Furthermore
there is little to no synergy near searcher 1 since in that region it is very unlikely that
both searchers would simultaneously observe a particle. The area of greatest synergy
corresponds to the most probable source locations for both searchers to simultane-
ously observe a particle. P(r0) is very flat at the boundaries; thus R0 contributes
little to I(H1,H2|R0) in the lower left corner and R is small.

4 Conclusion

In the real world, communication between agents, as well as centralized or decen-
tralized real-time computation can be difficult or expensive. Therefore it is important
to consider the classes of search problems for which coordination between searchers
can achieve quantitative advantages over independent agents. In this work we stud-
ied search algorithms for autonomous agents looking for the spatial location of a
stochastic source. We defined the search problem for multiple agents in terms of
infotaxis [see Eq. (1)]. We also showed why synergy gives rise to an advantage in
this type of search. We considered two types of sources. We first demonstrated that
a source emitting uncorrelated particles will afford no opportunity for synergy (see
Section 3.1). In a search for a Poisson source, multiple coordinated searchers (ones
that consider sets of joint moves rather than each considering an independent move)
can not hope to do better than multiple independent searchers. Next we showed
that, for a source emitting particles with (angular) correlations (see Section 3.2),
only synergy or independence is possible (see Fig. 1). The ability of the searchers
to leverage synergy depends strongly on their ability to estimate with some accu-
racy the probability distribution of source locations. These general considerations
are crucial for the exploitation of social computation in terms of the design of op-
timal collective algorithms in particular applications. The next step to making this
approach applicable to a broader class of problems, including those not limited to
spatial searches, is to generalize the results to more than 2 searchers and to explore
how synergy may be best leveraged to give increases in search speed and efficiency.
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Searcher 1
(a)

R(H1,H2,R0) = I(H1,H2)− I(H1,H2|R0)

(b)

P(R0)

(c)

I(H1,H2)

(d)

I(H1,H2|R0)

Fig. 1 Synergy for the two searcher problem with angular correlations. (a) R(H1,H2,R0) as a func-
tion of the position of searcher 2 (r2) for a fixed location of searcher 1 (r1, shown as a black star).
The most probable source location is in the center (black dot). The white to blue scale indicates
R = 0 to R = −2× 10−5 and we note that R ≤ 0 everywhere. The darker color indicates stronger
synergy values when searcher 2 is near the source. The synergy is less when searcher 2 is away
from or on the opposite side (R ≈ 0) of the source. (b) The probability distribution of source loca-
tions, peaked at the center: P(r0) = Aexp(−|r0|

2/0.02), where A = 1/ r0
P(r0) is a normalization

factor. White to blue indicates P = 0 to P = 0.02. (c) I(H1,H2); (d) I(H1 ,H2|R0). In (c) and (d)
white to blue indicates I = 0 to I = 6×10−5. Contour lines have been added to guide the eye. In all
frames the data is plotted in a two-dimensional spatial domain of x,y = [−0.5,0.5] and all vectors
are measured from the origin x = 0,y = 0. The parameter 2 = 1.1 in Eq. 5.

References

1. F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte. Coordinated decentralized search for a
lost target in a Bayesian world. Intelligent Robots and Systems, 2003. (IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on, 1:48, Oct. 2003.

100



When is social computation better than the sum of its parts?

2. M. Vergassola, E. Villermaux, and B. I. Shraiman. “Infotaxis” as a strategy for searching
without gradients. Nature, 445:406, 2007.

3. R. S. Sulton and A. G. Barto. Reinforcement learning: an introduction. MIT Press, Cambrigde
MA, 1998.

4. Iain D. Couzin, Jens Krause, Nigel R. Franks, and Simon A. Levin. Effective leadership and
decision-making in animal groups on the move. Nature, 433:513, 2005.

5. E. Bonabeau and G. Theraulaz. Swarm smarts. Scientific American, pages 72–79, Mar. 2000.
6. H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In COLT ’92: Proceedings

of the fifth annual workshop on Computational learning theory, page 287, 1992.
7. Y. Freund, E. Shamir, and N. Tishby. Selective sampling using the query by committee algo-

rithm. In Machine Learning, page 133, 1997.
8. S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation and random

walks. Theor. Comput. Sci., 284(1):25, 2002.
9. Luis M. A. Bettencourt, Greg J. Stephens, Michael I. Ham, and Guenter W. Gross. Functional

structure of cortical neuronal networks grown in vitro. Phys. Rev. E, 75:021915, 2007.
10. L. M. A. Bettencourt, V. Gintautas, and M. I. Ham. Identification of functional information

subgraphs in complex networks. Phys. Rev. Lett., 100:238701, 2008.
11. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991.
12. E. Schneidman, W. Bialek, and M. J. Berry II. Synergy, redundancy, and independence in

population codes. J. Neurosci., 23:11539, 2003.

101




