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Abstract

This is a study of fronts and patterns formed in reaction-diffusion systems. A doubly-diffusive
version of the two component FitzHugh-Nagumo equations with bistable reaction dynamics is in-
vestigated as an abstract model for the study of pattern phenomenologies found in many different
physical systems. Front solutions connecting the two stable unform states are found to be key build-
ing blocks for understanding extended patterns such as stationary domains and traveling pulses in
one dimension, and labyrinthine structures, splitting spots, and spiral wave turbulence in two di-
mensions.

The number and type of front solutions is controlled by a bifurcation that we derive both analyti-
cally and numerically. At this bifurcation, called the nonequilibrium Ising-Bloch (NIB) bifurcation,
a single stationary Ising front loses stability to a pair of counterpropagating Bloch fronts. In two
dimensions, we derive a boundary where extended fronts become unstable to transverse perturba-
tions. In addition, near the NIB bifurcation, we discover a multivalued relation between the front
speed and general perturbations such as curvature or an external convective field. This multivalued
form allows perturbations to induce transitions that reverse the direction of front propagation. When
occurring locally along an extended front, these transitions nucleate spiral-vortex pairs.

The NIB bifurcation and transverse instability boundaries divide parameter space into regions
of different pattern behaviors. Before the bifurcation, the system may form transient patterns or
stationary domains consisting of pairs of Ising fronts. Above the transverse instability boundary,
two-dimensional planar fronts destabilize, grow, and finger to form a space-filling labyrinthine,
or lamellar, pattern. Beyond the bifurcation the multiplicity of Bloch front solutions allows for
the formation of persistent traveling pulses and spiral waves. Near the NIB bifurcation there is an
intermediate region where new unexpected patterns are found. One-dimensional stationary domains
become unstable to oscillating or breathing domains. In two dimensions, the transverse instability
and local front transitions are the mechanisms behind spot splitting and the development of spiral
wave turbulence. Similar patterns have been observed recently in the ferrocyanide-iodate-sulfite
reaction.

ix



Chapter 1

Introduction

On a recruiting visit to the University of Arizona Program in Applied Math I attended a seminar
where Art Winfree mixed a mysterious combination of chemicals in small petri dishes. Minutes
later, as the prospective students looked on, beautiful target patterns and spiral waves formed in
the dishes. A year later, when I arrived as a new graduate student, I heard Al Scott explain how
impulses travel down an giant squid axon as electrical pulses. When I began studying nonlinear
optics, Jerry Moloney suggested a problem modeling the light output from a semiconductor placed
in a mirrored optical resonator. Although these systems are from chemistry, biology, and optics,
they have at least one common feature: the dynamics of the patterns they produce can be modeled
by reaction-diffusion equations.

In the fall of 1991, Ehud Meron arrived at the University of Arizona and we soon discovered our
common interest in patterns formed by reaction-diffusion systems. He had just finished a review
paper on one-dimensional and two-dimensional patterns in excitable media, and I had been doing
numerical studies of the semiconductor system. We started analyzing the two-component reaction-
diffusion model of the semiconductor resonator. Numerical simulations showed that stationary
pulses in the semiconductor system destabilized and started oscillatory motion. Oscillations had
been observed in experimental setups of the resonator and we wanted to understand the mechanism
behind them.

We realized that to make progress on that system we would first need to understand a sim-
pler model. Studying a simpler model had the advantage that our results might be more generally
applicable to other systems of the same class. With this in mind, we set off studying a bistable gen-
eralization of the FitzHugh-Nagumo equations. This reaction-diffusion model has the same flavor
as the semiconductor system but trades the complicated trigonometric nonlinearity for a simpler
cubic form.

In addition to the well known traveling fronts and pulses we found oscillating and stationary
domains. In two dimensions we found stationary labyrinthine patterns, spiral waves, spot splitting,
and spiral turbulence. We also discovered that an external convective field can cause breakup of a
regular rotating spiral pattern.

We took a different approach than most previous authors and studied the reaction-diffusion
model from the context of “domain walls”, or front solutions. This approach led us down an inter-
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CHAPTER 1. INTRODUCTION

esting path starting with the analysis of a bifurcation that we now call a nonequilibrium Ising-Bloch
(NIB) front bifurcation (see Section 2.3 for the definitions of “Ising” and “Bloch” fronts in this
context). At a NIB bifurcation, a single stationary front becomes unstable and a pair of counter-
propagating fronts appears. Before the bifurcation, combinations of front solutions give rise to
stationary and oscillating pulses. The stationary pulses are stable until the NIB bifurcation is ap-
proached and then oscillations in the width of the pulse set in. Beyond the bifurcation, multiplicity
of fronts leads to the formation of traveling pulses. The key idea is to use the knowledge of the
existence and type of different fronts to predict behavior of more complicated solutions consisting
of multiple fronts.

In two dimensions we derived a relation to predict when planar fronts become unstable to trans-
verse perturbations. For stationary patterns the transverse instability causes planar fronts to deform
and finger into complex labyrinthine, or lamellar, patterns. Near the NIB bifurcation, the transverse
instability is one mechanism for causing portions of traveling waves to spontaneously change direc-
tion. When directional transitions occur locally on two dimensional fronts, pairs of spiral vortices
are nucleated. For appropriate parameters and initial conditions, the system evolves to a state of
spiral turbulence characterized by the continuous creation and annihilation of spiral-vortex pairs.

A similar analysis also shows how planar fronts may make spontaneous directional transitions
under the influence of general perturbations. These transitions reverse the direction of propagating
fronts (or segments of fronts in two dimensions) and induce breakup of regular patterns. This
latter discovery led us to unify our ideas for the mechanisms behind spot splitting, spiral turbulence
and the breakup due to external convective forcing. For spot splitting we showed that the driving
mechanism behind front transitions is curvature of two-dimensional domains. Front transitions in
the spiral turbulence regime are induced by either a transverse instability, front interactions, or both.
External forcing provides the mechanism for front transitions in the breakup of a regular spiral
pattern due to convection.

The combination of the NIB bifurcation, transverse instability, and front transition analysis
provide a map to the patterns found in the two-dimensional system: spiral waves, target patterns,
labyrinthine patterns, spot replication, and spiral turbulence. This dissertation is a tour of the mod-
eling, theory, analysis, and numerical simulation of those patterns. Sometimes the tour will be
mathematical, sometimes physical, sometimes numerical, and sometimes heuristic.

1.1 Introduction to Reaction-Diffusion Equations

Reaction-diffusion systems refer to the class of partial differential equations where the right hand
side of a time-dependent equation can be divided into a local (in space) “reaction” part and a nonlo-
cal “diffusion” part. These equations are an abstract model for pattern formation but in many cases
have direct application to the fields of developmental biology, chemistry, optics, and branches of ap-
plied mathematics. For biological and chemical systems, for example, reaction-diffusion equations
represent a reduced description of a complicated set of reactions. The important aspect of all of the
applications is that the simple combination of reactions plus transport due to diffusion is sufficient
to produce a large variety of interesting patterns.

2



CHAPTER 1. INTRODUCTION

The general form of reaction-diffusion equations in one dimension is [1]

U t = f(U) +DUxx , (1.1)

where the subscripts denote partial derivatives of the vectorU . The function,f(U) (likely non-
linear!), contains the “reaction” terms and the spatial derivatives denote the “diffusion” terms. The
constant matrixD represents the diffusion or transport rate of each species.

The simplest example is the scalar equation [2],

ut = f(u) + uxx . (1.2)

Consider anf that has three zeros and varies with a parameterv, such asf = u − u3 − v. The
energy,E =

∫ uf(y) dy = −u2/2 + u4/4 + vu, has a double well form forv values in the range

−2
3
√

3
< v <

2
3
√

3
, (1.3)

as in Fig. 1.1. The two wells correspond to the two stationary homogeneous solutions,u = u+(v)
andu = u−(v), of

ut = −δF/δu = u− u3 − v + uxx , (1.4)

with F the formal Lyapunov functional

F =
∫

[E(u) + u2
x/2] dx . (1.5)

[3, 4]. The functionalF is infinite on unbounded domains but in cases studied in this dissertation
we will often consider finite or periodic systems where it is finite.

Figure 1.1: The potential functionE for different values of the parameterv.

Front solutions connecting the two homogeneous states of (1.4) satisfyuχχ + cuχ +u−u3− v
whereχ = x− ct is the coordinate in the moving frame, and

c =
E(u−)− E(u+)∫+∞
−∞ u′(v)2 dχ

, (1.6)

3



CHAPTER 1. INTRODUCTION

is the front speed. Since the denominator in (1.6) is always positive, the direction of front propaga-
tion is controlled by the relative sizes ofE(u−) andE(u+). Fronts always propagate in the direction
that takes the system to the lowest energy,E . Whenv < 0, c > 0 and the front propagates to the
right (towards largerx values) and whenv > 0, c < 0 and the front propagates to the left. When
v = 0 the front is stationary.

1.2 The Model Equations

Early studies of fronts in reaction-diffusion models began with Luther’s work around the turn of
the century [5, 6]. Later, Fisher [7] and Kolmogorovet al. produced theoretical treatments. Even
more studies were inspired by Turing’s famous paper [8] showing how uniform systems may be
unstable to finite wavenumber perturbations. More researchers picked up the theme and studies of
reaction-diffusion models have reached into many disciplines. See the review articles [2, 9, 10, 11]
for summaries of earlier works.

One of the most famous reaction-diffusion models is the Fitzhugh-Nagumo model for the con-
duction of electrical impulses along a nerve fiber [12, 13, 14]. The original heuristic model for
the flow of electric current through the surface membrane of a giant squid axon was proposed by
Hodgkin and Huxley in 1952 [15]. The proposed four component model represents equations for
the membrane current density, the sodium activation, the sodium inactivation, and the potassium
activation in the nerve axon. FitzHugh simplified these equations by proposing the following pair
of equations he called the Bonhoeffer-van der Pol (BVP) model

J =
1
c
ut − u+ u3 − v ,

cvt + bv = a− u ,
(1.7)

whereJ is the current density,u represents the combined membrane voltage and sodium activation,
andv represents the combined sodium inactivation and potassium activation. The parametersa, b,
andc are constants (see [12, 13] for details). Using an analog computer and phase plane projections,
FitzHugh showed that the dynamics of this model were qualitatively the same as the dynamics of
the more complicated four variable Hodgkin-Huxley model.

Nagumoet al. studied the same equations but simulated them in an electric circuit [13] as a
distributed line. The equations they used show explicitly the diffusion

huss =
1
c
ut − u+ u3 − v ,

cvt + bv = a− u ,
(1.8)

with the constanth related to the density of the resistance per unit length in the line. Both FitzHugh
and Nagumo found that this model allows for the propagation of pulses and pulse trains, where the
pulses represent an excited domain or electrical signal.

The reaction diffusion model studied in this dissertation is a direct extension of Eqns. (1.8).
First letx =

√
h s, and replacet with t/c, andv with −v. Then, settingε = 1/c2, the equations

4



CHAPTER 1. INTRODUCTION

take the form

ut = u− u3 − v + uxx ,

vt = ε (u− bv + a) .
(1.9)

Next, identify the parametersa1 = b, a0 = −a, and add a diffusion term with coefficientδ to the
second (v) equation. Extended into two dimensions the resulting model equations are

ut = u− u3 − v +∇2u ,

vt = ε (u− a1v − a0) + δ∇2v .
(1.10)

The four parametersa1, a0 ∈ R, ε > 0, andδ > 0 are adjustable in the model and control the
number and type of fixed points. The parametersa1 anda0 determine the reaction kinetics;i.e.
how many homogeneous stationary states are available. The time-scale ratio between the two fields,
ε, and diffusion coefficient ratio,δ, determine the stability of those solutions and also will serve as
bifurcation parameters in the analysis of Chapter 2. In some cases we will study the one-dimensional
version of (1.10) whereu andv are functions ofx andt only.

Typically Eqns. (1.10) are scaled with1/ε in front of theu reaction terms. There is a practical
advantage when doing numerical simulations for scaling with theε in front of thev reaction terms.
In this case, the narrowu front is always of sizeO(1) and whenε is decreased the pattern size gets
larger instead of the front size getting smaller. It is obvious then, when varying parameters (say
makingε smaller) that the domain size must be increased to fit the pattern solution and correspond-
ingly the number of computational points must be increased. This scaling makes it is simpler to
keep a constant number of grid points across a front region when varying system parameters.

In the context of chemical reactions, the fieldu is interpreted as the activator andv the inhibitor;
the growth ofu stimulates growth of bothu (as long as|u| < 1) andv while the growth ofv causes
decay in bothu andv. In certain contextsu is referred the autocatalyst andv the reactant. Most
studies of activator-inhibitor systems considerε � 1 whereu is the fast variable andv is the slow
variable. The study presented in this dissertation encompasses all positive values ofε, both small
and large.

The stationary homogeneous solutions of (1.10) are found by setting the derivatives equal to
zero and looking for intersections of the nullclines

u− u3 − v = 0 ,

u− a1v − a0 = 0 .
(1.11)

In Figs. 1.2, 1.4, 1.6, we have identified the three basic cases for intersections of the nullclines.
In Fig. 1.2 the nullclines intersect at a single point on an outer branch of the cubic nullcline; in
Fig. 1.4 at a single point on the middle branch of the cubic nullcline; and in Fig. 1.6 there are three
intersections, two on the outer branches and one on the middle branch.

When the nullclines intersect at a single point lying on an outer branch of the cubic nullcline
(Figure 1.2) andε is small, the dynamics are “excitable” and describe the situation in an active
medium such as a nerve fiber. The single fixed point is stable but perturbations past the excitation

5



CHAPTER 1. INTRODUCTION

Figure 1.2: The nullclines of Equation (1.10) for the case of an excitable system. The arrows
indicate the direction of the flow.

threshold cause a large excursion in phase space before returning to the fixed point. Since there is
only one uniform state, isolated front solutions are not possible. It is possible, however to have both
traveling and stationary pulses of excited regions. A typical solution profile with the corresponding
phase plane picture are shown in Figure 1.3.

When the nullclines intersect at a single point on the middle branch of the cubic nullcline (Fig-
ure 1.4) the uniform solution may lose stability in two different ways, either to a spatial pattern or
to temporal oscillations. For illustration, leta0 = 0 anda1 < 1. Then the state(u, v) = (0, 0) is the
single homogeneous solution. This homogeneous state loses stability to a spatial pattern through a
Turing bifurcation [8] at

µ = µc = 2− a1 + 2
√

1− a1 with ε >
1
a1
, (1.12)

whereµ = δ/ε. Forµ > µc the system forms a stationary periodic pattern at a finite wavenumber
given by

kc =

(
1− a1 +

√
1− a1

2− a1 + 2
√

1− a1

)1/2

. (1.13)

Whenε =< εHB = 1/a1, the solution(u, v) = (0, 0) loses stability through a Hopf bifurcation and
uniform oscillations set in. A typical solution profile for a one-dimensional pattern formed through
the Turing instability is shown in Figure 1.5.

Finally, when the nullclines intersect at three points each on a different branch of the cubic
nullcline (Figure 1.6) the system is bistable. Each of the two fixed points on the outer branches
represent stable uniform solutions while the fixed point on the inner branch is unstable to uniform

6



CHAPTER 1. INTRODUCTION

Figure 1.3: An excitable system: typical pulse solution and corresponding diagram in the(u, v)
phase plane. The solid line is theu field and the dashed line is thev field. Parameters:ε =
0.01, δ = 1.0, a1 = 1.0, a0 = −0.5.

perturbations. In addition to the two stable solutions now there may also be front solutions connect-
ing the two uniform stable states. A typical front solution profile is shown in Figure 1.7 with its
corresponding phase plane diagram.

1.3 Systems With Similar Phenomenology

This section describes two reaction-diffusion systems that have characteristics similar to the model
considered in this dissertation. The first, a semiconductor resonator, share a similarity in the form
of the equations; the model has two fields and the dynamics are exictable, bistable, or oscillatory
depending on parameters. It also has the extra twist that one of the system parameters varies nonuni-
formly in space.

In parallel with our analysis and numerical modeling, new chemical experiments exhibiting sim-
ilar spatiotemporal patterns were being performed. A group at the Center for Nonlinear Dynamics at
the University of Texas published patterns formed by the ferrocyanide-iodate-sulfite (FIS) reaction
that display spiral turbulence, labyrinthine patterns, and spot-replication. This reaction shares many
similar patterns as solutions to Eqns. (1.10) and the semiconductor system although the models of
the FIS reaction have significantly different reaction kinetics.

1.3.1 Semiconductor Resonator

One application of reaction-diffusion equations outside the context of either biology or chemistry
is a model for a semiconductor medium placed between two partially reflective mirrors. In this
configuration, known as a semiconductor Fabry-Perot resonator (orétalon), the input parameter is
an incident light beam and the multivalued or oscillatory output is the transmitted light intensity
from the cavity. Optical bistability in a semiconductor was demonstrated experimentally in 1978 by
McCall [16] and oscillations were observed in 1992 by Grigor’yants and Dyuzhikov [17].

7
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Figure 1.4: The nullclines of Equation (1.10) for the case of a Hopf-Turing type system.

When an input beam shines on the material some of the light is reflected back and some enters
the cavity where it may resonate at frequency modes dependent on both the size of the cavity and
the intensity of the input beam. The semiconductor refractive index is nonlinearly dependent on the
intensity of the light in the cavity. Changing the intensity of the light can effectively tune the cavity
in and out of resonance. Coupled to the feedback from the mirrors, this nonlinear dependence gives
rise to a hysteresis in the transmitted intensity allowing for more than one possible output value for
a single input beam intensity.

The proposed model for this system is a pair of coupled reaction-diffusion equations for the
carrier density,N , and temperature,T in the semiconductor [18, 19]

Nt =
αI(N,T )

h̄ω
− N

τN
+D∇2N ,

Tt =
qN

CρτN
− (T − T0)

τT
+ κ∇2N .

(1.14)

The number of carriers,N , increases by absorption of an optical photon proportional to the light
intensityI with α the absorption coefficient. The carriers decrease by recombination with holes
with a characteristic time scaleτT , and diffuse transversely with diffusion coefficient D. The tem-
perature,T , increases by recombinative heating withq the heat of one recombination event,C and
ρ the specific heat and density of the semiconductor. The temperature decreases with heat sinking
to the ambient temperatureT0 on a characteristic timeτt and diffuses transversely with diffusion
coefficientκ. Typical parameter values are given in Table 1.1.

In general we would have to solve the transverse field equation for the electric field in the cav-
ity [20]. If we restrict ourselves to small cavities where the round-trip time for the light is much

8



CHAPTER 1. INTRODUCTION

Figure 1.5: A Hopf-Turing system: A typical pulse solution in and corresponding diagram in the
(u, v) phase plane for a pattern formed beyond the Turing instability. The solid line is theu field
and the dashed line is thev field. The phase plane shows that for small wavelength patterns the
trajectory does not reach the cubic nullcline. Parameters:ε = 1.00, δ = 0.01, a1 = 0.5, a0 = 0.0.

shorter than the electron-hole recombination time and assume that longitudinal density variations are
small the model simplifies; we can ignore self-focusing and diffraction of the light in the semicon-
ductor. Using the boundary conditions for the Fabry-Perot cavity [21], the light intensity averaged
over the thickness of the cavity is given by

I(N,T ) =
I0(1−R)(1− e−αl)(1 +Re−αl)

(1− 2Re−αl cos (4πnl/λ) +R2e−2αl)αl
, (1.15)

wherel is the length of the cavity,λ the wavelength of the input beam andR is the reflectivity of
the mirrors. Generation of carriers and heating both change the refractive index of the material each
with different sign,

n(N,T ) = n0 − σN + γT , (1.16)

whereσ andγ are positive constants andn0 is the initial refractive index.
The typical recombination timeτN is much shorter than the characteristic cooling timeτT , so the

dynamics of the carriers takes place on a much faster time scale than the temperature fluctuations.
This disparity of time scales creates a stiff pair of equations.

The model equations can be scaled to dimensionless form to aid in analysis and simulation
(Appendix E). A suitable scaling leaves the following two-component system,

ut = I0W (u, v)− u+∇2u ,

vt = ε(u− v/τ̄) + δ∇2v ,
(1.17)

W (u, v) =
(1−R)(1− e−αl)(1 +Re−αl)

(1− 2Re−αl cos (n(u, v)) +R2e−2αl)
, (1.18)

n(u, v) = β − βNu+ βT v , (1.19)

9



CHAPTER 1. INTRODUCTION

Figure 1.6: The nullclines of Equation (1.10) for the case of a bistable system.

where the sizes of the variablesu andv are of O(1) andε is a small parameter. Scalings that convert
the dimensionless parameters to physical quantities are in Appendix E.

Figure 1.8 shows isoclines for Eqs. (1.17). Notice that they take nearly the same form as for
the model reaction-diffusion equations studied in this dissertation (compare with Fig. 1.6), with
the exception that the trigonometric nonlinearity allows for the possibility of more than three fixed
points. For example, the system can have three stable fixed points or have one stable fixed point and
one oscillatory point. For that reason this system can have a dazzling variety of complex temporal
and spatiotemporal dynamics [17].

1.3.2 FIS Reaction

Recent experiments in a gel-filled chemical reactor have been performed on the ferrocyanide-iodate-
sulfite (FIS) reaction [22, 23, 24]. Many different spatial patterns were observed: stationary labyrin-
thine patterns (lamellae), splitting spots, repulsive front interactions, and traveling waves that collide
and annihilate. This was the first time labyrinthine patterns and spot splitting were observed in a
chemical system. It was also the first observation in a chemical system of approaching fronts that
slow and stop at a finite separation. All of these behaviors are manifested in the reaction-diffusion
model studied in this dissertation.

Several models for the kinetics of this reaction have been proposed. Edlbomet al. proposed a
model with twelve reacting species [25], and Gásṕar and Showalter developed a similar ten-species
model [26, 27]. As a further simplification they derived a reduced model of four species,SO2−

3 ,
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Figure 1.7: A bistable system: A typical front solution in and corresponding diagram in the(u, v)
phase plane. The solid line is theu field and the dashed line is thev field. Parameters:ε = 0.01, δ =
2.0, a1 = 2.0, a0 = 0.0.

HSO−3 ,H+, andI2 (see [24] for details). The model reads

Xt = k1AY − (k−1 + k2 + k0)X − k4ZX +DxXxx ,

Yt = −k1AY + (k−1 + k2)X − 2k3Y
2 + 3k4ZX + k0(Y0 − Y ) +DyYxx ,

Zt = k3Y
2 − k4ZX − (k5 + k0)Z +DZZxx ,

At = −k1AY + k−1X + k0(A0 −A) +DAAxx .

(1.20)

Typical parameters are [24]DY = DZ = DA = 1.0× 10−5cm2/s,Dx = 2.0× 10−5cm2/s, with
the reaction rates,ki’s, summarized in Table 1.2. For typical parameter values[Fe(CN)−4

6 ]0 =
2.0mM , [IO−3 ]0 = 75.0mM , [SO−2

3 ]0 = 89.3mM , andk0 = 0.014s−1 the dynamics are very
“stiff”: the time scales of the reactants vary widely. For example,k1 andk2 differ by about ten orders
of magnitude. While this can be a disadvantage when doing numerical simulations as discovered by
Lee and Swinney [24], it may be possible to take advantage of the disparate time scales and reduce
the model further by elimating the fast reacting species. Appropriate reductions may produce a new
system with cubic nonlinearities [24].

Because of the difficulty of computing the FIS reaction in large systems a similar two species
model, the Gray-Scott model [28, 29, 30], has often been used instead [31, 32]. Neither that model
nor the proposed model for the FIS reaction (even in its simplified four species version!) is of the
same form as the reaction-diffusion model considered in this dissertation. Amazingly, regardless of
the exact details of the chemical kinetics, many of the pattern behaviors found in the FIS models
and the model considered here are similar.

11



CHAPTER 1. INTRODUCTION

Table 1.1: Parameters for semiconductor model

Characteristic recombination time (carrier lifetime)τN 3.1× 10−7

Characteristic thermal time τT 0.01s

Wavelength λ 5.6µm

Heat produced by single recombination q h̄ωJ

Specific heat density C 9.6× 10−2 J/gK

Semiconductor density ρ 5.8g/cm3

Ambient temperature T0 77K

Carrier generation contribution to refactive index σ 4.1× 10−3

Thermal contribution to refractive index γ 6.1× 10−4

Initial refractive index n0 0

Absorption coefficient α 6cm−1

Band edge thermal coefficient θ 17.5

Mirror reflectivity R 0.36

Semiconductor thickness l 0.02cm

1.4 Scope of the Dissertation

The theory and application of reaction-diffusion models reaches far and wide. In this dissertation I
can only scratch the surface and make a few stabs into the unknown. Since a portion of these results
have already been published I have chosen to include those results as reprints in the appendices
to this dissertation. The layout reflects the structure for this type of dissertation as dictated by the
University of Arizona Graduate College requirements.

Chapter 1 - Introduction Introduction to reaction-diffusion systems, the model reaction-diffusion
equations, and a description of a few similar models

Chapter 2 - Patterns in one-dimensionA study of front, pulse, stationary and oscillating solu-
tions to the reaction-diffusion model equations

Chapter 3 - Patterns in two-dimensionsAnalysis and computation of labyrinthine patterns, spi-
ral waves, spot replication, and spiral turbulence

Chapter 4 - Numerical methods Description of numerical techniques

12
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Figure 1.8: Isoclines for the scaled semiconductor model of Eqns (1.17). The lower fixed point is
stable (excitable), the middle one is unstable and the top is of Hopf-Turing type. Parameters:τ = 1,
IO = 8.0,R = 0.36, α = 3.2, l = 0.02, β = 0.0, βN = 4.0, βT = 14.0.

Chapter 5 - Conclusion Summary and conclusion

Appendix A - Paper A “Domain walls in nonequilibrium systems and the emergence of persistent
patterns”

Appendix B - Paper B “Pattern formation in dissipative nonvariational systems: the effects of
front bifurcations”

Appendix C - Paper C “From labyrinthine patterns to spiral turbulence”

Appendix D - Paper D “Spatiotemporal oscillations in a semiconductorétalon
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Table 1.2: Rate constants for FIS model

k1 5.0× 1010M−1s−1

k−1 8.1× 103s−1

k2 8.0× 10−1 × [IO−3 ]0M−1s−1

k3 1.0× 106 × [IO−3 ]0M−2s−1

k4 2.3× 109M−1s−1

k5 1.2× 103 × [Fe(CN)−4
6 ]0M−1s−1
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Chapter 2

Patterns in One Dimension

Although many real world patterns are two or three dimensional much insight can be gained by first
studying the one dimensional version of Eq. (1.10)

ut = u− u3 − v + uxx ,

vt = ε (u− a1v − a0) + δ vxx .
(2.1)

As described in Chapter 1, the system can be either of excitable, Hopf-Turing, or bistable type
depending on the choice of the parametersa1 anda0. In this chapter we will primarily consider
the case wherea1 anda0 are chosen such that the system is bistable as in Fig. 1.6: there are three
homogeneous fixed points, two stable ones on the outer branches of the cubic nullcline and one
unstable one on the center branch.

Most studies of Eqs. (2.1) have focused on the regime of smallε and used that parameter as a
basis for a singular perturbation analysis of front and pulse solutions [9, 10, 33]. If the range ofε is
extended to take on all positive values we find there is a critical valueεc where a front bifurcation
occurs; a single stationary front bifurcates to a pair of counterpropagating fronts. This bifurcation,
which we call a nonequilibrium Ising-Bloch (NIB) bifurcation, plays a key role determining the
types of patterns formed in the system.

For δ = 0 anda0 = 0 the front bifurcation can be found by expanding the stationary front
solution in terms of the propagation speedc. Whenδ is small the result can be extended in powers
of δ giving a relation for the front bifurcation line in theε − δ parameter plane. For largeδ we
use a different small parameter,ε/δ, in a singular perturbation analysis to find the front bifurcation.
For moderate values ofδ both approaches break down and the exact front bifurcation is computed
numerically.

This chapter focuses on the NIB front bifurcation and the implications it has on pattern forma-
tion in one dimension. First we derive front solutions for the model equations (1.10) and explain
how front multiplicity may lead to persistent patterns. Next, we analyze the NIB bifurcation when
δ = 0 and for the extension to smallδ. Since many of the interesting patterns in this model are
found for δ 6= 0 we derive the NIB bifurcation in theε − δ plane forε/δ � 1. The majority of
the one-dimensional analysis and pattern dynamics found in this system are described in A and B.
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CHAPTER 2. PATTERNS IN ONE DIMENSION

Summaries of the key results are presented in Sections 2.2.1 and B. In Section 2.3 we explain the
terminology of Ising and Bloch fronts in the context of reaction-diffusion systems. Section 2.4 con-
tains a detailed derivation of the front bifurcation whenε/δ � 1. An important new result of this
chapter is presented in Section 2.5, where we show how the effects of general perturbations, such
as an external convective field or front interactions, may induce front transitions. These transitions
provide a mechanism for one-dimensional breathing pulses shown in Section 2.5.2. Breathing do-
mains and front transitions will reappear again in the study of two-dimensional spot replication and
spiral wave breakup.

2.1 Front Solutions

Front solutions to Eqns. (1.10) play a key role in determining what types of patterns may develop
in the system. In the bistable case there are three intersections of the nullclines (1.11). The inter-
sections on the outer branches of the cubic curve are stable uniform solutions,(u, v) = (u+, v+)
representing the “up” state domain, and(u, v) = (u−, v−) the “down” state domain. Front solutions
connect regions of up states to down states. There are also fronts that connect either the up state or
the down state to the solution(u, v) = (0, 0). Those will not be considered because the solution
(0, 0) is always unstable to uniform perturbations in the bistable case. As we will see, the type
(stationary or propagating) and stability of these front solutions depends on the sizes ofε andδ.

For simplicity consider first a nondiffusingv field, δ = 0. For largeε the dynamics of thev field
are on a much faster time scale than theu field. If we letν = 1/ε and rescale Eq. (2.1) byτ = t/ν
we find

uτ = ν(u− u3 − v + uxx) ,

vτ = (u− a1v − a0) .
(2.2)

Settingν = 0, the leading order solution ofu is independent ofτ and thev Eq. (2.2) can be solved,

v(x, t) = v0(x)e−εa1t +
(u(x, t)− a0)(1− e−εa1t)

a1
. (2.3)

After an initial transient thev field is slaved to theu field along the nullcline asv = (u − a0)/a1.
Substituting this into theu equation we have the asymptotic system,

ut = 1− 1
a1
u− u3 − a0

a1
+ uχχ . (2.4)

In the traveling frame,χ = x− ct, constant speed front solutions of Eq. (2.4) satisfy

uχχ + cuχ + 1− 1
a1
u− u3 − a0

a1
, (2.5)

with (u, v)→ (u±, v±) asχ→ ∓∞. Since this equation is invariant under the transformation

χ→ −χ, c→ −c , (2.6)

symmetric front solutions with(u, v)→ (u±, v±) asχ→ ±∞ follow directly.
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CHAPTER 2. PATTERNS IN ONE DIMENSION

This asymptotic system is gradient,i.e. derivable from a potential, and front solutions have
speedc as given in the relation for the scalar diffusion equation (1.6). Fora0 = 0, the states
(u±, v±) are symmetric,(u+, v+) = −(u−, v−), and the two potential wells are of equal depth.
From (1.6) this implies that the speed of the front is zero. Whena0 < 0 fronts propagate to the right
and whena0 > 0 they propagate to the left. The exact form of the stationary front solution is

u0(χ) = −u+ tanh(u+χ/
√

2) ,

v0(χ) = u0(χ)/a1 ,
(2.7)

whereu± = ±
√

1− a−1
1 .

For smallε the front solutions are different. Since the stationary solution (2.7) does not depend
on ε it still exists but is now unstable. In addition there are two counterpropagating fronts with their
symmetric counterparts; they connect the same asymptotic states at+∞ and−∞ but propagate in
opposite directions. As pointed out earlier, the regime of smallε and propagating fronts and pulses
has been studied extensively [9]. Asymptotic solutions for smallε fronts can be derived but in this
chapter we will need only the leading order forms near the NIB bifurcation. The key point is that
in the range of intermediateε there is a bifurcation from single to multiple solutions. In the next
section we will show how to derive this bifurcation point and with it the leading order traveling
wave solutions of (2.1).

2.2 A Front Bifurcation

2.2.1 “Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent
Patterns”

The analyses and results of this section are described in “Domain walls in non-equilibrium systems
and the emergence of persistent patterns.” A. The following is a summary of the main results.

2.3 Ising and Bloch Walls

The internal structure of the traveling front solutions differs from that of the stationary front. For
traveling fronts, the leading orderv field is translated with respect to theu field by the amountca1.
Since the parametera1 is always positive, for traveling fronts thev field always lags behind theu
field as in Figure 2.1. For stationary,c = 0, fronts theu andv field both are zero simultaneously as
shown in Figure 2.2.

If we introduce the phaseφ = arctan(v/u), we see that the stationary solution has a constant
phase across the front except at the core (u = 0, v = 0) where it undergoes a jump ofπ. The
traveling fronts however have a smoothly varying phase and both fields are never simultaneously
zero. Figure 2.3 shows the phaseφ for the front solutions of Figures 2.1 and 2.2.

We refer to the stationary front as an Ising front and the pair of counterpropagating fronts beyond
the NIB bifurcation as Bloch fronts. Ising and Bloch fronts in this context were first introduced
by Coullet et al. [34] as nonequilibrium analogs of Ising and Bloch walls in ferromagnets. In
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Figure 2.1: (a) Rightward traveling front solution. For traveling fronts thev field always lags behind
theu field. (b) Traveling front in the(u, v) phase plane. The arrow indicates the trajectory direction
for increasingx.

ferromagnets the angleφ would correspond to the angle the magnetization vector makes with the
easy magnetization direction [35].

We often refer to the parameter regime (in theε− δ plane) where there is only the Ising front as
the “Ising regime” and where there are counterpropagating Bloch fronts as the “Bloch regime.”

2.4 The NIB Bifurcation for ε/δ � 1

To study the NIB bifurcation in the regimeε/δ � 1 we consider one-dimensional front solutions
propagating at constant speeds and connecting the up state at−∞ to the down state at+∞. First
we rescale time and space according to

z =
√
µx, τ = εt, µ = ε/δ � 1 , (2.8)

and go into the traveling frame,ζ = z − cτ . The model equations 2.1 then take the form

µuζζ + cδµuζ + u− u3 − v = 0 ,

vζζ + cvζ + u− a1v − a0 = 0 .
(2.9)

Constant speed front solutions of (2.9) can be separated into two parts pertaining to distinct regions:
outer regions away from the front, where bothu andv vary on a scale ofO(1), and an inner region
including the front, whereu varies much faster thanv. In the outer regions the derivative terms in
theu equation of (2.9) can be neglected leading to the solutionsu = u±(v) of the remaining cubic
relationu− u3− v = 0. Using these forms in thev equation of (2.9), and setting the front position,
u = 0, at the origin,ζ = 0, we obtain closed equations forv,

vζζ + cvζ + u±(v)− a1v − a0 = 0 , (2.10)
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Figure 2.2: (a) Stationary front solution. Theu field andv field both go through(0, 0) simultane-
ously. (b) Stationary front in the(u, v) phase plane. The arrow indicates the trajectory direction for
increasingx.

Figure 2.3: The phase angleφ = arctan(v/u) for (a) a Bloch front and (b) an Ising front. The
Bloch front phase rotates smoothly throughπ but the Ising front suffers a jump.

with u = u+(v) whenζ < 0 andu = u−(v) whenζ > 0. To simplify, we choosea1 large enough
so that|v| � 1 and the branchesu±(v) can be approximated by the linear formsu±(v) = ±1−v/2.
We then obtain the following linear boundary value problems for the two outer regions:

ζ < 0 : vζζ + cvζ − q2v + q2v+ = 0 , v(0) = vf ,

v(−∞) = v+ ,

ζ > 0 : vζζ + cvζ − q2v + q2v− = 0 , v(0) = vf ,

v(∞) = v− ,

(2.11)

where

v± =
±1− a0

a1 + 1/2
, q2 = a1 + 1/2 , (2.12)
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andvf is the value ofv at the front position. The solutions are

v(ζ) = (vf − v+)eσ1ζ + v+ , ζ < 0 ,

v(ζ) = (vf − v−)eσ2ζ + v− , ζ > 0 ,
(2.13)

with
σ1,2 = −c/2± (c2/4 + q2)1/2 . (2.14)

By construction, the two outer solutions forv are continuous atζ = 0. Matching the derivatives of
v at ζ = 0 gives a relation betweenc, the speed of the front, andvf , the value of thev field at the
front position,

vf = − c

2q2(c2/4 + q2)1/2
− a0

q2
. (2.15)

A second relation betweenvf and c is obtained by solving the inner problem. In the front
regionu varies on a scale ofO(

√
µ) but variations ofv are still on a scale ofO(1). Stretching the

traveling-frame coordinate according toχ = ζ/
√
µ, we obtain from (2.9)

uχχ + ηcuχ + u− u3 − v = 0 ,

vχχ +
√
µcvχ + µ(u− a1v − a0) = 0 ,

(2.16)

whereη2 = εδ. Settingµ = 0 in the v equation of (2.16) leaves the equationvχχ = 0, and we
choose the solutionv = constant. Fixing the constant,v = vf , in the equation foru produces a
nonlinear eigenvalue problem forc,

uχχ + ηcuχ + f(u, vf ) = 0 ,

u(∓∞) = u±(vf ) ,
(2.17)

with f(u, vf ) = u− u3 − vf . The cubic function,f , can be rewritten as

f(u, vf ) = −[u− u−(vf )][u− u0(vf )][u− u+(vf )] , (2.18)

whereu−(vf ) = −1 − vf/2, u0 = vf , andu+(vf ) = 1 − vf/2, are the linearized forms of the
cubic isocline near the three solutionsu = −1, 0, 1 respectively. The speed of the front solution of
(2.17) is

ηc =
1√
2

(u+ − 2u0 + u−) =
−3√

2
vf . (2.19)

Combining the two equations (2.15) and (2.19) we find an implicit relation for the front speed,
c, in terms of the equation parametersη, a1, anda0,

√
2

3
ηc =

c

2q2
√
c2/4 + q2

+
a0

q2
. (2.20)
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This equation was derived using the coordinate scaling (2.8). The relation for the original variables
x andt is found by replacingc with c/η in (2.20),

c =
3c√

2q2
√
c2 + 4η2q2

+ c∞ , (2.21)

wherec∞ = 3a0/
√

2q2.
For the symmetric case,a0 = 0 and consequentlyc∞ = 0. Equation (2.21) then has the solution

c = 0 representing a stationary Ising front. This solution exists for allη values. Whenη < ηc =
3/2
√

2q3, two additional solutions,c = ±2q
√
η2
c − η2 appear, representing counterpropagating

Bloch fronts. Figure 2.4 displays the corresponding pitchfork bifurcation.

Figure 2.4: The NIB front bifurcation in the(c, η) plane for the symmetric case,a0 = 0. The solid
(broken) line represents a stable (unstable) branch of front solutions.

For the nonsymmetric case we solve (2.21) numerically. A plot of the solutions,c = c(η), in
the (c, η) plane yields the saddle-node bifurcation diagram shown in Figure 2.5. The bifurcation
point,η = ηc, occurs for a smaller criticalη value than the symmetric case, and the front that exists
for η > ηc is not stationary. We still refer to the two stable counterpropagating fronts beyond the
bifurcation as Bloch fronts and to the single front that exists forη > ηc as an Ising front.

Sinceη2 = εδ the bifurcation point,η = ηc, defines a line in theε − δ plane,δ = δF (ε).
For the symmetric caseδF (ε) = ηc/ε = 9/8q6ε. For the nonsymmetric case the bifurcation line
was computed numerically. Figures 3.1 and 3.2 show the bifurcation lines for the symmetric and
nonsymmetric cases respectively. These results for the bifurcation line are not valid forδ ∼ O(ε)
and smaller. In that regime we use a different approach as described in Section B.

2.5 Front Transitions

Dynamic transitions between the two counterpropagating fronts are possible near the NIB bifurca-
tion. These front transitions are induced by perturbations on the system. The perturbations may

21



CHAPTER 2. PATTERNS IN ONE DIMENSION

Figure 2.5: The NIB front bifurcation in the(c, η) plane for the nonsymmetric case,a0 = −0.1.
The solid (broken) line represents a stable (unstable) branch of front solutions.

be either intrinsic, like curvature (in two dimensions) and front interactions, or extrinsic, like an
external convective field. Front transitions are important for analyzing the splitting domains (spot
splitting), spiral breakup due to convective forces, oscillation of one and two dimensional domains,
and the nucleation of spiral vortices.

The general form of the front velocity vs. perturbation relation is given by a multivalued curve as
shown in Figure 2.6. This figure, typical near a NIB bifurcation, shows how realizable perturbations
may drive the system past the knee of the relation and induce a transition from a rightward traveling
front to a leftward traveling front. For a traveling pulse, this type of transition may destroy the
pulse in the following way. Consider the case of zero perturbation in Figure 2.6. For a rightward
propagating pulse the leading front is on the upper branch of the velocity-perturbation relation and
the trailing front (or back) is on the lower branch. If the value of the perturbation is lowered in a
portion of the domain, the leading front will undergo a transition when it reaches that location. The
transition reverses the front’s direction and sends it propagating towards the back. Forδ sufficiently
small or for fast fronts traveling wave parameters, two opposing fronts approaching each other
annihilate (see B) and the pulse is destroyed.

In [36] we derive an order parameter equation for the dynamics of fronts under perturbations.
This scalar equation has a double-well potential similar to the scalar diffusion equation (1.2) but
this time each well represents a traveling wave solution. The resulting order parameter equation is
gradient [37], implying that when the system is perturbed past the endpoint of a branch (thus losing
one of the potential wells) a transition occurs to the other remaining (counterpropagating) solution.

In this section we show how the multivalued velocity vs. perturbation relation arises for both a
convective perturbation and a nonuniform spatial value of the parametera0. In Chapter 3 we will
see how curvature provides a very similar effect by producing a multivalued speed vs. curvature
relation. To demonstrate the effects of the multivalued relation we show how a pulse collapses due
to a convective perturbation and how oscillating domains arise in systems with spatially nonuniform
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Figure 2.6: A typical front velocity vs. perturbation graph near a NIB bifurcation. The arrow shows
the direction of a front transition from a rightward traveling front to a leftward traveling front

parameters.

2.5.1 Transitions Induced by Convection

First consider introducing a convective perturbation,J , to the one-dimensional model equations

ut = u− u3 − v + uxx ,

vt = Jvx + ε (u− a1v − a0) + δ vxx .
(2.22)

In a chemical system the termJ might represent transport of ions due to an electric field or convec-
tive transport in a flow field. Often there is no reason to expect that each chemical species would
convect differently in a flow field, but often the model is a reduction of a complex chemical system.
When equations are eliminated from the original many species model, effective differential flows
may occur when transport terms are renormalized [38].

In the traveling frameχ = x− ct with constant speedc, Eqs. (2.22) become

uχχ + cuχ + u− u3 − v = 0 ,

δvχχ + (c+ J)vχ + ε(u− a1v − a0) = 0 .
(2.23)

Multiplying thev equation in (2.22) by the factor∆(s, t) = c/(c+ J) we obtain the following pair
of equations,

uχχ + cuχ + u− u3 − v = 0 ,

δ̃vχχ + cvχ + ε̃(u− a1v − a0) = 0 ,
(2.24)
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whereδ̃ = ∆δ and ε̃ = ∆ε. These new equations describe a front propagating at speedc but in a
unperturbedmedium characterized by the new effective parametersε̃ andδ̃.

In Section 2.4 we derived a relation for the front speed as a function of the system parameters.
The speed of a front,c0, is given by

c0 = F (c0, η) , F (X,Y ) =
3X√

2q2
√

(X2 + 4q2Y 2)
+ c∞ , (2.25)

with η2 = εδ, q2 = a1 + 1/2, andc∞ = 3a0/
√

2q2. Using equation (2.25) and substituting the new
parameters,c0 → c, ε→ ε̃, andδ → δ̃, we obtain the speed of fronts in the perturbed system

c = F (c+ J, η) . (2.26)

Figure 2.7 shows graphs ofc vs. J for parameters deep in the Bloch regime (η large), near the
NIB bifurcation, and far in the Ising regime (η small). Away from the bifurcation, in both the Ising
and Bloch regimes, the relation is nearly linear. In the Ising regime there is a single solution and
in the Bloch regime there are three, two representing the stable counterpropagating fronts and one
representing the unstable front. Near the NIB bifurcation thec vs. J relation ismultivalued. Finite
perturbations may drive a front past the knee in the multivalued relation and induce a front transition
thus reversing its direction of propagation.

Figure 2.7: Front velocity,c, vs. convective perturbation,J : (a) deep in the Bloch regime, (b) near
the NIB bifurcation, (c) deep in the Ising regime.

To demonstrate how fronts make transitions consider ac vs. J . relation as shown in Fig. 2.8a.
For zero perturbation both counterpropagating fronts exist but for values ofJ less than the endpoint
of the upper branch (J = Jc ∼ −0.10) only the single lower branch exists. If the domain of the
equations has a region where the parameterJ is less thanJc, rightward propagating fronts will make
a transition there to leftward propagating fronts. Figure 2.9 shows a numerical experiment in which
the distribution of the perturbationJ is fixed to be that shown in Fig 2.8b. A rightward traveling front
(Fig 2.9a) makes a transition when it reaches the region of negativeJ . A pulse solution propagates
until the leading front makes a transition and annihilates the trailing back (Fig 2.9b) leading to pulse
collapse.
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Figure 2.8: Parameters for the numerical simulations of Figure 2.9. (a) Thec vs.J relation. (b) The
nonuniform distribution ofJ in the domain.

2.5.2 Oscillating Domains

Another possible outcome of the multivaluedc vs. J relation is the formation of oscillating fronts
and pulses. The single valued curve in Fig. 2.10a represents thec vsJ relation away from the NIB
bifurcation in the Ising regime. At a fixed value ofJ , approximatelyJ = 0.1, the front is stationary.
For smallerJ it propagates to the left and for largerJ to the right. If the domain has a nonuniform
distribution ofJ as in Fig. 2.10b, a front will make damped oscillations until it reaches the steady
state position whereJ attains the value of the zero speed front as depicted in Fig. 2.11a.

If the c vs. J relation is multiple valued as in Fig. 2.12, thec = 0 front is unstable. Now the
rightward traveling in the zero perturbation region makes a transition from the upper branch to the
lower branch (arrow A) when it crosses the point in the domain whereJ is decreased (nearx = 50).
It then propagates to the left. When the front reaches the region whereJ returns to its original value
it makes a transition back to the right propagating solution (arrow B). This motion persists to form
an isolated oscillating front as shown in Fig. 2.11b.

2.5.3 Mechanisms for Front Transitions

Variation of the equation parameters can also produce multivalued relations for front velocity vs.
perturbation. Fig. 2.13 shows plots of front velocity vs. the parametera0 deep in the Bloch regime,
near the NIB bifurcation, and far into the Ising regime. Since this relation has the same multivalued
form we expect that similar front transitions occur as well. The semiconductor model proposed in
Section 1.3.1 has a similar nonuniform spatial dependence on a parameter.

Another important mechanism for inducing front transitions is interactions between two inde-
pendent front structures. In B, Section 4.2, we find oscillating domains in a uniform system. The
mechanism for the front transitions that reverse front propagation and produce the oscillations of
Figs. B14a and B15a is a repulsive front interaction. Our hypothesis is that there is also a similar
multivalued relation behind the interactions of fronts although we do not have analysis to show that
yet.

Finally, as will be discussed in Section 3.1, small curvature perturbations on fronts produce a
multivalued front velocity relation. In Chapter 3 we will show how this can lead to spot splitting

25



CHAPTER 2. PATTERNS IN ONE DIMENSION

Figure 2.9: The effect of convective perturbations on the propagation of one-dimensional solutions.
The thick line represents the position of theu fronts (defined to beu = 0) and the thin line is
the position of thev fronts (atv = 0). (a) A front makes a transition from rightward to leftward
propagating. (b) The leading front makes a transition and collides with the trailing front, thus
annihilating the pulse.

and spiral turbulence.

2.6 “Spatiotemporal Oscillations in a SemiconductorÉtalon”

The analyses and results of this section are presented in Paper C, “Spatiotemporal oscillations in a
semiconductoŕetalon”. The following is a summary of the main results.

This paper contains a study of the semiconductor model of Section 1.3.1. Important steps were
the scaling of the model equations and the construction of a code to numerically integrate the scaled
system.

An significant feature of the model is that the input intensity parameter,Iin, of Equation (C3) is
not uniform but instead Gaussian shaped (Equation (C7)). For this reason the system has spatially
nonuniform parameter dependence through the termIc(N,T, x). We considered this system by
analyzing the isoclines as they referred to each point in space,eg. the center of the system might
correspond to an oscillatory system while the tails were monostable (and excitable). When varia-
tions of the spatial dependence ofIin are of the same order as the width of a typical pulse solution, as
might be in a typical experimental setup, this type of analysis breaks down and a different approach
to characterize the dynamics is used (see Section B of Paper C).

This approach had some success in explaining two interesting phenomena discovered in the
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Figure 2.10: (a) Thec vs. J relation for the case of damped oscillations to a stationary front and (b)
The nonuniform distribution ofJ in the domain

numerical simulations, “whole-beam oscillations” and “edge oscillations”. Whole beam oscilla-
tions, shown in Figure C7, represent a nonuniform parameter version of an oscillatory system; the
center of the system is of oscillatory type and the edges are monostable A pulse is found to first
spontaneously form and then contract until the pulse collapses. Edge oscillations occur for slightly
different parameters where the pulse expands and contracts periodically as shown in Figure C17.

In the time since this paper was published we have found that oscillations can occur due to
nonuniform parameter distributions near the NIB bifurcation. In the previous Section 2.5 we showed
how a nonuniformity of the parametera0 can lead to oscillating, or breathing, domains. It would be
interesting to check to see if the nonuniformity of the input beam intensity,Iin in this model, has
the same effect.
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Figure 2.11: The effect of convective perturbations on the dynamics of single fronts. The thick line
represents the position of theu fronts (defined to beu = 0) and the thin line is the position of the
v fronts (atv = 0). (a) A single front undergoes damped oscillations to a stationary solution. (b) A
single front maintains steady oscillations.

Figure 2.12: Thec vs. J relation for the case of an oscillating front
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Figure 2.13: Front velocity,c, vs. the parametera0: (a) deep in the Bloch regime, (b) near the NIB
bifurcation, (c) deep in the Ising regime.
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Chapter 3

Patterns in Two Dimensions

Labyrinthine patterns, spot replication, and spiral wave turbulence are all examples of complex
spatial and spatiotemporal patterns exhibited in two-dimensional reaction-diffusion systems. Laby-
rinthine, or sometimes called lamellar, patterns have been observed in a variety of gradient sys-
tems [37] including garnet layers [39], ferrofluids [40], and block copolymers [41, 42]. Recently
they also were found in the bistable FIS (ferrocyanide-iodate-sulfite) reaction [22]. This nongradient
system also exhibits spot replication and spiral turbulence [23].

Much of this phenomenology can be understood in terms of two key front instabilities: an
instability to transverse perturbations reminiscent of the Mullins-Sekerka instability in solidification
fronts [43], and a Nonequilibrium Ising-Bloch (NIB) front bifurcation [34] A. Beyond the transverse
instability and deep in the Ising regime labyrinthine patterns may develop when small disturbances
on planar Ising fronts grow and fill the system through fingering and tip splitting. In the vicinity
of the NIB bifurcation intrinsic perturbations, such as curvature, may drive dynamic transitions
between the two counterpropagating fronts and lead to spot splitting and spiral breakup [36].

In this Chapter we focus on the regimeε/δ � 1 of Eqs. (1.10). In Section 3.1 we derive the
boundaries for the transverse instability. Next we demonstrate numerically the instability of planar
Ising fronts to transverse perturbations. With suitable initial conditions we find either stationary
labyrinthine patterns (Section 3.2) or spot-splitting (Section 3.3). In Section 3.4 the transverse
instability is shown to lead to spiral turbulence; the continuous creation and destruction of spiral
vortex pairs. Other mechanisms can also produce spiral turbulence as shown in Section 3.5. Finally
in Section 3.6 we show how an external convective field can cause the breakup of a regular spiral
pattern.

3.1 Transverse Instability

Forδ sufficiently large, planar front solutions may become unstable to transverse perturbations [44,
45, 46]. To study the transverse instabilities of the various front solutions we change from the fixed
coordinate system to a coordinate system moving with the front. LetX = (X,Y ) be the position
vector of the front represented by theu = 0 contour line. The moving coordinate frame(r, s) is
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defined by the relation
x = (x, y) = X(s, t) + rr̂(s, t) , (3.1)

with the coordinates parameterizing the direction along the front, and

r̂ =
Ysx̂−Xsŷ√
X2
s + Y 2

s

, (3.2)

the unit vector normal to the front (the subscripts denotes partial derivatives with respect tos). We
assume the front radius of curvature is much larger thanlv =

√
δ/ε, the scale ofv variations across

the front. We also assume the curvature varies slowly both along the front direction and in time.
With these assumptions Eqs. (1.10) assume the form

urr + (cr + κ)ur + u− u3 − v = 0 ,

δvrr + (cr + δκ)vr + ε(u− a1v − a0) = 0 ,
(3.3)

whereκ(s, t) = XsYss − YsXss is the front curvature, andcr(s, t) = Xt · r̂ is the front normal
velocity.

Multiplying Eqs. (3.3) by the factor∆(s, t) = (cr + κ)/(cr + δκ) gives

urr + (cr + κ)ur + u− u3 − v = 0 ,

δ̃vrr + (cr + κ)vr + ε̃(u− a1v − a0) = 0 ,
(3.4)

with ε̃ = ε∆ and δ̃ = δ∆. This system is exactly of the same form as Eqs. (2.9) for a planar
(κ = 0) front propagating at constant speed,cr + κ, in the normal direction,̂r, except the original
parametersε andδ are replaced by effective parametersε̃ andδ̃ [47]. The front bifurcation formula
derived in Section 2.4 can now be applied to show the effects of curvature on the front velocity.
Using Eq. (2.21) withc replaced bycr + κ andη by η̃ = η∆ we obtain an implicit relation for the
normal front velocity in terms of its curvature,

cr + κ =
3(cr + δκ)√

2q2[(cr + δκ)2 + 4η2q2]1/2
+ c∞ . (3.5)

Equation (3.5) can be used to study the stability of the planar fronts to transverse perturbations.
We look for a linear velocity curvature relation,

cr = c0 − dκ+O(κ2) , (3.6)

valid for small curvature. Herec0(η) is the speed of a planar front satisfying (2.21). A positive
(negative) sign of the coefficientd implies stability (instability) to transverse perturbations. Insert-
ing (3.6) into the expression for the front speed, keeping only linear terms, we find,

d =
1
α

+
(

1− 1
α

)
δ, α = 1− c0 − c∞

c0

(
1− 2q4

9
(c0 − c∞)2

)
. (3.7)
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For each planar solution branch,c0 = c0(η), the conditiond = 0 defines a line in theε − δ plane
where the corresponding planar front branch undergoes a transverse instability. Settingd = 0 for
the symmetric case (a0 = 0), the Ising and Bloch fronts become unstable to transverse modulations
whenδ > δI(ε) = 8

9q
6ε andδ > δ±B(ε) = 3/2

√
2q3√ε, respectively. The transverse instability

boundary and the front bifurcation line,δF (ε) = 9/8q6ε, are shown in Fig. 3.1. Figure 3.2 shows
the transverse instability boundaries and the front bifurcation line for a typical nonsymmetric case.
Note that the lines corresponding to the two Bloch fronts, denoted byδ±B , are not degenerate as in
the symmetric case.

Figure 3.1: The NIB bifurcation and the transverse instability lines in theε− δ parameter plane for
the symmetric case (a0 = 0). The front bifurcation,δ = δF (ε), is indicated by the thick line. The
transverse instabilities are indicated by the thin lines,δ = δI(ε) for Ising fronts, andδ = δ±B(ε) for
Bloch fronts.

The two instabilities presented above provide a guide to exploring pattern types in theε−δ plane.
Deep in the Ising regime there exists only one type of front and no traveling pulses or waves are
expected [Paper B]. Instead, stationary patterns may develop: ordered stripes below the transverse
instability, and labyrinthine patterns above it. Far into the Bloch regime, where there is coexistence
of counterpropagating fronts, traveling stripes and spiral waves appear. They are smooth below
the transverse instability and develop ripples above it. The transition between these two regimes is
not sharp. There exists an intermediate region, including the NIB bifurcation line, where complex
spatio-temporal patterns such as replicating spots and spiral turbulence are found.

The key to understanding these complex behaviors is the multivalued form of the velocity-
curvature relation near the NIB bifurcation. Figure 3.3 shows typical solution curves of Eq. (3.5).
The multivalued velocity-curvature relation near the NIB bifurcation (Fig. 3.3b) unfolds to a single
valued relation far in the Ising regime (Fig. 3.3a), or folds even further to form three effectively dis-
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Figure 3.2: The NIB bifurcation and the transverse instability lines in theε− δ parameter plane for
the nonsymmetric case (a0 = −0.1). The front bifurcation,δ = δF (ε), is indicated by the thick line.
The transverse instabilities are indicated by the thin lines,δ = δI(ε) for Ising fronts, andδ = δ±B(ε)
for Bloch fronts.

connected linear branches deep in the Bloch regime (Fig. 3.3c). The same front transitions discussed
in Section 2.5 occur, but now with curvature as the perturbation instead of an external field. As in
the one-dimensional example such transitions reverse the direction of front propagation. When oc-
curring locally in two-dimensions they nucleate spiral-vortex pairs and may lead to spot splitting
and spiral turbulence.

Most studies of traveling waves in excitable and bistable media [9, 10, 33] have assumed a
linear velocity-curvature relation,cr = c0 − dκ. The linear relation is valid deep into the Bloch
regime(η � ηc) and not near the NIB bifurcation (see also [48]) with the exception of the special
caseδ = 1. There,d = 1 and the velocity is simplycr = c0 − κ, wherec0(η) satisfies (2.21).
Figure 3.3e shows a typical velocity-curvature relation in the Bloch regime whenδ = 1. The three
linear branches correspond to the three solutions of Eq. (2.21). Approaching the NIB bifurcation
whenδ = 1, the two upper branches coalesce leaving only the single lower branch in the Ising
regime. Near the NIB bifurcation forδ > 1 the upper branch terminates at negative curvature
values (Fig. 3.3d) while forδ < 1 it terminates at positive curvature (Fig. 3.3f).

3.2 Labyrinthine Patterns

Far into the Ising regime and beyond the transverse instability line,δ > δI(ε) = 8
9q

6ε, front shapes
meander, grow fingers, and split at the tips. This behavior can be understood using the velocity-
curvature relation deep in the Ising regime, as depicted in Fig. 3.4c. The positive slope of this
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relation over a wide range of curvature implies that front portions with higher curvature propagate
faster, forming fingers. It also implies that the transverse instability remains effective even at the
highly curved fingertips. This leads to tip splitting.

Figure 3.5 shows the evolution of a stripe domain in the Ising regime above the transverse
instability boundary and corresponding to the velocity-curvature relation in Fig. 3.4c. The initial
stripe is perturbed transversely along the middle part. The perturbation grows, forms a meandering
stripe, and then undergoes fingering and tip splitting. A final stationary labyrinth results when the
pattern fills the entire domain.

Notice the final pattern in Fig. 3.5d is connected since there were no domain fusion events during
the evolution. Domain fusion is avoided by the repulsive front interactions (due to the diffusive
damping ofv in the region between approaching fronts [B]). Closer to the front bifurcation the
front speeds are higher (see Fig. 2.5 ) and the repulsive interactions may not be strong enough to
prevent fusion. As a result the eventual stationary pattern may contain disconnected domains.

Similar labyrinthine patterns have been observed in the bistable FIS reaction [22]. Our interpre-
tation is that these patterns occur in the Ising regime where the single front structure corresponds to
a high pH state invading a low pH state.

3.3 Single Spot Dynamics

Closer to the NIB bifurcation the nonlinearity of the velocity-curvature relation becomes impor-
tant. Consider an up state disk expanding radially outward. Depending on the system parameters
several scenarios for evolution are possible. Deep enough into the Ising regime, where the velocity-
curvature relation is still single valued (see Fig 3.4a), a stationary disk solution exists. The disk has
radius1/κ0, wherecr(κ0) = 0, and is stable to uniform expansions and contractions because the
velocity-curvature relation has positive slope atcr = 0 (it might be unstable, however, to transverse
perturbations [45]).

Still closer to the front bifurcation (but in the Ising regime) the velocity-curvature relation be-
comes multivalued, and the slope atcr = 0 negative, as illustrated in Fig. 3.4b. The stationary disk
is no longer stable to expansions and contractions and a breathing disk solution appears [45]. To
understand this breathing motion, note first that the boundary of an expanding disk corresponds to
a front lying on the upper branch in Fig. 3.4b. As the disk expands the front curvature decreases.
When the curvature falls below the value where the upper branch terminates a transition to the lower
branch takes place. The disk stops expanding and starts contracting. The curvature increases until
the endpoint of the lower branch is reached and a transition back to the upper branch occurs. As a
result the disk stops contracting and begins expanding again. These oscillations are similar to those
found in one-dimensional domains [B] [49, 50] with front interactions playing the role of curvature
in inducing front transitions [36].

To verify these expectations we studied numerically Eqs. (1.10) in polar coordinates assuming
circularly symmetric front solutions (to avoid transverse instabilities). Such solutions satisfy

ut = urr +
1
r
ur + u− u3 − v, (3.8)
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vt = δvrr +
δ

r
vr + ε(u− a1v − a0). (3.9)

They represent circular fronts with curvaturesκ(t) = 1/r0(t), wherer0(t) solvesu(r0, t) = 0. Fig-
ures 3.6 and 3.7 show the curvatures of up state disks as functions of time for parameters pertaining
to Figs. 3.4a and 3.4b respectively. A single valued (multivalued) velocity-curvature relation leads
to a stationary (oscillatory) asymptotic state.

In fully two-dimensional systems oscillating disks might be unstable to non-circularly symmet-
ric perturbations. Consider an expanding disk perturbed to an oval shaped domain as shown in
Fig. 3.8a. The parameters chosen pertain to a velocity-curvature similar to the one in Figure 3.4b.
As the domain expands the flatter portions of its boundary are the first to reach the end of the upper
branch and undergo front transitions. These portions then propagate towards one another, annihi-
late, and split the domain as shown in Figs. 3.8b and 3.8c. The crossing points of theu = 0 and
v = 0 contour lines indicate the cores of spiral vortices. Note that the splitting process involves the
creation and the subsequent annihilation of two spiral-vortex pairs. A successive splitting is shown
in Fig. 3.8d. The asymptotic state in this case is a disordered stationary pattern with many discon-
nected domains. Remnants of the unstable breathing motion are often seen when the split spots first
contract, then approach a minimum size and start expanding. Both spot splitting and the persistence
of small spots have been observed recently be Leeet al. in the FIS reaction [23, 24].

3.4 “From Labyrinthine Patterns to Spiral Turbulence”

The analyses and results of this section are described in Paper D, “From labyrinthine patterns to
spiral turbulence.” The following is a summary of the main results.

Further approach to the NIB bifurcation results in disordered dynamic patterns where spiral
vortices nucleate and annihilate repeatedly. We refer to such a state as spiral turbulence. The
nucleation of spiral-vortex pairs results from local front transitions, very much like in spot splitting
except the mechanisms that drive the transitions are different and depend on the system parameters.

Paper D is a study of how the transverse instability can lead to both labyrinthine patterns and
spiral turbulence. Far into the Ising regime, labyrinthine patterns form when planar fronts are desta-
bilized. Beyond the NIB bifurcation spiral waves may form. Near the NIB bifurcation, spirals waves
break due to both the transverse instability and the formation of highly curved cusp regions.

This paper is where we first derive the boundaries for the transverse instability as shown in
Section 3.1 (see Figs. 3.1 and 3.2). The transverse instability boundaries and front bifurcation line
divide theε−δ parameter plane into regions of different pattern behaviors. First consider the region
below the transverse instability boundaries,δ < δ±B . In the Ising regime (η > ηc), where there is
a single isolated front solution, we find stationary stripe solutions. Ifδ is small, below the critical
value for formation of stationary domains (seeµst in Figure 18 of [B], no stationary domains form
and the system goes to the uniform up-state or down-state. In the Bloch regime (η < ηc), we find
traveling and spiral waves.

Above the transverse instability boundaries we find different behavior. The stationary stripes
in the Ising regime are unstable to perturbations and grow to form labyrinthine patterns as already
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seen in Section 3.2. Near the front bifurcation line the uniform spiral waves break and new spiral
waves are continuously nucleated and destroyed.

Figure D4 shows the development of spiral turbulence from a single stripe domain. For the
parameters of this simulation both the front and the back of the initial stripe are unstable to transverse
perturbations. The stripe first breaks into pieces that each form part of a new spiral wave. The new
spiral waves are also unstable and the system evolves to a state of continuous birth and death of
spiral waves.

In addition to the transverse instability, the formation of highly curved front regions also plays
a role in the development of spiral turbulence. When two up-state domains merge, often cusp-like
regions of high curvature form between them as in Fig. D5a. The transverse instability and negative
curvature cusp regions both drive fronts to the end of a solution branch and induce transitions. The
transitions locally reverse the direction of front propagation and and cause the domain to be cut
into disjoint pieces. Figure D5 shows this process in detail. The dark and light shadings indicate
regions of the up-state and down-state ofu. The thick line is the zero contour of theu field and
the thin line is the zero contour of thev field. An original single cusp-like structure is formed in a
rightward propagating front (Fig. D5a). It grows (Fig. D5b) and nucleates a pair of spiral vorices
as crossings of the zero contours (Fig. D5c). Finally the domain is cut and two new spiral tips are
formed (Fig. D5d).

The simulation was continued tot = 6000 without any qualitative change in the solution.
Figure 3.9 shows a plot of the number of vortices as a function of time. After an initial period
of sharply increasing number of vortices, the number fluctuates between approximately 30 and 70.
Since the system is small the fluctuations are large compared with the average number. Although
the solution maintains the same qualitative form untilt = 6000, the uniform states,(u−, v−) and
(u+, v+), are always solutions to Eqs. (1.10) and it is possible that eventually the system might
evolve to either one of those states.

3.5 Spiral Turbulence Revisited

As we have seen in the previous section, forδ sufficiently large, the transverse instability plays a
dominant role in inducing front transitions that lead to sprial turbulence. Figures 3.10 and 3.11
show spiral turbulence for smallerδ values. In this parameter regime front interactions are the
major driving force. Figures 3.4f and 3.4g show the corresponding velocity-curvature relations
for Figs 3.10 and 3.11. In both figures the upper branches terminate at positive curvature values.
Processes reducing the curvature of fronts on these branches past the endpoints cause transitions to
the lower front branches. As we have seen in the previous section, single noncircularly symmetric
domains may undergo such transitions and split. In the presence of nearby domains, however,
repulsive front interactions accelerate domain splitting by flattening out approaching curved fronts.
Framesd, e, f of Figures 3.10 and 3.11 show local front transitions and splitting driven by front
interactions (see the regions indicated by the arrows). These processes are strikingly similar to
those observed in the FIS reaction [24]. Front interactions may also cause spiral-vortex nucleation
and splitting by directly inducing front transitions. Reflection of one-dimensional fronts provides
an example of front interactions leading to front transitions [B]. The spiral-vortex nucleations in
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Figs. 3.10 and 3.11 are likely to result from both mechanisms.
The patterns in Fig. 3.10 differ from those in Fig. 3.11 in a few respects. The initial conditions

in both simulations are the same but the subsequent spiral breakup is different. In Figure 3.10 most
of the spiral wave disappears as the weakly curved front away from the core undergoes a front
transition. In Fig. 3.11 the weakly curved part of the spiral survives longer until front interactions
or interactions with the boundaries come into play. This is because the upper branch of the the
velocity-curvature relation pertaining to Fig. 3.11 terminates at a lower curvature value than that of
Fig. 3.10 (see Figs. 3.4f and 3.4g). Another difference is the prevalence of more spots in the patterns
of Fig. 3.10. This is partly because domain fusions are avoided in Fig. 3.10 but occasionally take
place in Fig. 3.11 (closer to the NIB bifurcation, front speeds are higher and domain fusions are
more likely).

3.6 Spiral Breakup by an External Convective Field

A convective perturbation may also cause the breakup of a uniformly rotating spiral wave. Experi-
ments on the Belousov-Zhabotinsky reaction in a in a Petri dish [11] show target and spiral waves,
but when the cover of the dish is removed convective motion due to evaporation sets up Bénard cells
in the layer. The onset of convective motion destroys the ordered spiral state [51, 52]. The resulting
disordered state returns to an ordered state when the cover is replaced.

Adding a convection term to the model equations (1.10) we obtain

ut = u− u3 − v +∇2u ,

vt = ε (u− a1v − a0) + J · ∇v + δ∇2v ,
(3.10)

wereJ is an external vector field. We already considered in Section 2.5 the effects of such a
perturbation in a one dimensional system whereJ = Jx̂. We found that near the NIB bifurcation
the velocity vs. J relation was multivalued and that perturbations could induce transitions from
rightward propagating to leftward propagating fronts. The result was that traveling pulses might
collapse when the leading front, on one branch of the relation, makes a transition, while the trailing
front, on the other branch, does not.

Now let J represent a two dimensional convection pattern in the form of hexagonal Bènard
cells with the system parameters tuned to produce the velocity vs.J relation as in Figure 2.8. For a
propagating stripe of up-state domain, such as the arm of a spiral, the leading front is on the upper
branch of the velocity vs.J relation and the trailing front is on the lower branch. Notice, atJ = 0,
that the leading front is close to the end of the upper branch (in the negativeJ direction) but the
speed of the front on the lower branch is barely affected by changes inJ . When the stripe propagates
through the hexagonal pattern alternating portions of the leading front feel convective perturbations
in the opposite direction of propagating, i.e. regions whereJ = J · n̂ < 0. If the magnitude is large
enough, the leading front will make a transition, nucleating a spiral vortex pair at each Bénard cell.

Figures 3.12 and 3.13 show the breakup of a spiral wave in a hexagonal convective field. The
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convective field is given byJ = ∇φ, where

φ = A
3∑
i=1

cos(qi · x) , (3.11)

q1 = (Q, 0) , q2 = (−Q/2,
√

3Q/2) , q3 = (−Q/2,−
√

3Q/2) . (3.12)

When the convective field is switched on, after Framea of Figure 3.12, the spiral wave breaks at the
Bénard cells, forming new spiral vortex pairs. Figure 3.13 provides a closer look at the nucleation
process near one cell.
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Figure 3.3: Front velocity,c, vs. curvature,κ. (a) Deep in the Ising regime. (b) Near the NIB
bifurcation. (c) Deep in the Bloch regime. In the Bloch regime near the NIB bifurcation: (d)δ > 1,
(e) δ = 1, (f) δ < 1.
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Figure 3.4: A map of the velocity vs. curvature relation plane. The thick line represents the front
bifurcation fora0 = −0.1 and the insets displayc vs. κ for the point indicated by the solid circle.
The axis scales for the insets are the same as in Fig. 3.3.
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a b

c d

e f

Figure 3.5: The evolution of an initially perturbed stationary stripe in the Ising regime
above the transverse instability line (see Figure 3.4c). The dark and light regions corre-
spond to the up and down states respectively. The framesa, b, c, d, e, f pertain to timest =
100, 525, 1100, 1900, 2675, 5000. The computational parameters area1 = 2.0, a0 = −0.1,
ε = 0.05, δ = 4.0 on a domain of0 ≤ x ≤ 400, 0 ≤ y ≤ 400.
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Figure 3.6: Curvature,κ, vs. time for a disk shaped domain. Far in the Ising regime (Figure 3.4a)
a stationary disk pattern is reached. Computational parameters:a1 = 2.0, a0 = −0.1, ε = 0.028,
δ = 4.0.

Figure 3.7: Curvature,κ, vs. time for a disk shaped domain. Near the NIB bifurcation (Figure 3.4b)
oscillations set in. Computational parameters:a1 = 2.0, a0 = −0.1, ε = 0.01, δ = 6.0.
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Figure 3.8: Spot splitting of an oval shaped domain. The shaded (light) region corresponds to the
up (down) state and the thick (thin) line represents the contour of theu = 0 (v = 0) field. Frames
a, b, c, d pertain to timest = 80, 240, 280, 340. Local front transitions occur at the flatter portions
of the front. They are accompanied by nucleation of vortex pairs, and followed by domain splitting.
Computational parameters:a1 = 2.0, a0 = −0.15, ε = 0.014,δ = 3.5.
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Figure 3.9: Number of vortices vs. time for the simulation in Figures 4 and 5 of Paper D. A vortex
is defined by the crossing of theu = 0 andv = 0 contours.
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a b

c d

e f

Figure 3.10: Spiral breakup for the velocity vs. curvature relation of Figure 3.4g. The frames
a, b, c, d, e, f represent the solution at timest = 60, 640, 1540, 3760, 3780, 3800 respectively. The
computational parameters area1 = 2.0, a0 = −0.10, ε = 0.0375, δ = 1.2 on a domain of
0 ≤ x ≤ 400, 0 ≤ y ≤ 400. For a more detailed description see the text.
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a b

c d

e f

Figure 3.11: Spiral breakup for the velocity-curvature relation of Figure 3.4f. The frames
a, b, c, d, e, f represent the solution at timest = 80, 620, 900, 1890, 1900, 1910 respectively. The
computational parameters are the same as Figure 3.10 withε = 0.035. For a more detailed descrip-
tion see the text.
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Figure 3.12: Breakup of a spiral wave induced by a hexagonal convective pattern. The light and dark
regions correspond to down and up states, respectively. The dotted curves denote contours of con-
stant convection speed. The convection flow direction is outward from the centers of the hexagons.
Framea is the unperturbed spiral wave and framesb, c, d are taken at timest = 100, 140, 220 from
the onset of the convective pattern. Parameters used:a0 = −0.1, a1 = 2.0, ε = 0.032, δ = 0.9,
A = 1.59 andQ = 0.06283.
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Figure 3.13: A closer look at a typical breakup process in Figure 3.12. The thick (thin) lines
are contours ofu = 0 (v = 0). The direction of front propagation follows from the rule that
the v = 0 contour always lags behind theu = 0 contour. The framesa, b, c, d pertain to times
t = 140, 160, 180, 200. They show a local front transition, accompanied by the nucleation of
a vortex pair (the crossing points of the contour lines), and the breakup of the up state domain.
Parameters are the same as in Figure 3.12.
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Chapter 4

Numerical Methods

Numerical simulations of Eqs. (1.10) were crucial to the development and testing of the ideas pre-
sented in this dissertation. This Chapter provides a description of methods and algorithms used for
numerically computing the one-dimensional and two-dimensional solutions. Although Eqs. (1.10)
are often viewed as a reduction from a more complicated set of equations they are still non-trivial
to solve in large domains and for long times. In one dimension most solutions could be computed
quite easily on small workstations using general methods for PDE’s and packaged software tools.
Two-dimensional simulations, typically on grid sizes of400× 400, required more careful schemes
to be feasible on the same class of machines.

The numerical solutions were computed using the method of lines approach for partial differen-
tial equations [55, 56]. The method of lines decouples the discretization of the spatial and temporal
operators into independent problems. The spatial derivatives were represented on uniform grids
with finite difference approximations and the resulting set of coupled ordinary differential equa-
tions solved by a suitable time discretization; depending on the parameter regime either an explicit
or implicit method. The explicit methods are appropriate for situations where the time scales are not
widely varying (ε is not too small or large compared with1) and when the diffusion is not too big (δ
of O(1) or smaller). They were used to compute the traveling waves and spiral waves in the Bloch
regime. The implicit methods were used for the computation of slowly varying patterns such as the
formation of stationary labyrinthine structures. Using an implicit method requires the solution of a
large sparsely coupled system of nonlinear equations at each time step. The key to making implicit
methods viable is the fast solution of this nonlinear system.

Section 4.1 describes the discretizations of the spatial operators of Eqs. (1.10). The time inte-
gration methods and the schemes for choosing an adaptive time step are detailed in Section 4.2. The
iterative method for solving the nonlinear system of equations is shown in Section 4.3.

4.1 Spatial Discretization

The first step in the method of lines approach for PDEs is the discretization of the spatial operators.
The model equations can be written as

U t = f(U) +DL(U) , (4.1)
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with theL operator given byL = ∂2/∂x2 in one dimension orL = ∇2 in two dimensions. The
vectorU(x, y, t) represents the two components (u, v), and

f(U) =

 u− u3 − v

ε (u− a1v − a0)

 . (4.2)

The boundary conditions are chosen to be either periodic or Neumann (no-flux). For most
physical cases, Neumann boundary conditions are the most appropriate. Consider, for example,
a stirred chemical reactor. At the boundaries of the reactor the chemical species are not fixed to
have a specific concentration. The chemicals cannot, however, have any flow through the wall of
the container. In some cases, mostly when studying regular patterns or traveling waves it is more
convenient to use periodic boundary conditions. When the period is large compared with the size of
single domain structures, both boundary conditions produce the same qualitative results.

In one dimension, periodic boundary conditions imply thatU(x + Lx) = U(x), whereLx is
the domain size. The Neumann, or no-flux, conditions are implemented as symmetric boundary
conditions where all of the odd derivatives are zero at the boundaries,x = 0, andx = Lx,

Ux(0, t) = Uxxx(0, t) = · · · = 0 ,

Ux(Lx, t) = Uxxx(Lx, t) = · · · = 0 .
(4.3)

In two dimensions the simulations were carried out on a square grid which adds the following
conditions: for the periodic case,

U(x, y + Ly, t) = U(x, y, t) , (4.4)

whereLy is the size of the domain in they direction; for the symmetric case,

Uy(x, 0, t) = Uyyy(x, 0, t) = · · · = 0 ,

Uy(x, Ly, t) = Uyyy(x, Ly, t) = · · · = 0 .
(4.5)

In one dimension the continuous operators were discretized on a uniform mesh ofN + 1 points
on varying domain sizes. The grid points are labeled byxi, wherei = 0, 1, · · · , N . Enough grid
points were chosen so the grid spacing satisfied∆x = Lx/(N + 1) <= 1 (and similarly fory
in two dimensions). This choice ensured, for typical parametersε andδ, that there were at least
6 to 8 points across the narrow front region inu. The simulations were checked with higher grid
resolutions. Doubling the number of points occasionally changed the exact location of the front
bifurcation but did not qualitatively effect the nature of the patterns.

The functionf was represented at the grid points,xi , by its value at each locationf(Ui), where
Ui = U(xi). The operatorL was replaced with a discrete operator using either2nd or 4th order
finite difference approximations. In the interior regions of the domain we obtain an approximation
for LU accurate to second order by the formula,

LUi =
Ui+1 − 2Ui + Ui−1

∆x2
+O(∆x2) , (4.6)
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where∆x is the uniform grid spacing. For a fourth order approximation

LUi =
−Ui+2 + 16Ui+1 − 30Ui + 16Ui−1 − Ui−2

12∆x4
+O(∆x4) . (4.7)

The DERMOD package [57] of numerical differentiation routines provided a flexible and reliable
tool in programming the derivative approximations using these formulas.

At the boundaries the same formulas were used to compute the derivatives by adding fictitious,
or ghost points, outside the computational domain. For2nd order finite difference approximations to
the second derivative an extra point is needed beyond each end of the one dimensional computational
domain and for4th order approximations two extra points are needed beyond each end. The solution
is not integrated forward time on these extra points; they are updated between each time step by
filling in the values according to the boundary conditions as follows.

For periodic boundary conditions the solutions at the two ends of the domain are identified,
U0 = UN , and we effectively use a grid of onlyN points. To use centered difference formulas at
the boundaries,x0 andxN−1 , we extend the solution periodically,UN = U0 , UN+1 = U1 , at the
right boundary andU−1 = UN−1 , U−2 = UN−2 , at the left. For symmetric boundary conditions
we useN +1 points and reflect the solution about the two boundary pointsU0 andUN . At the right
end of the domain this results inUN+1 = UN−1 , UN+2 = UN−2 , and at the left end,U−1 = U1 ,
U−2 = U2 .

In two dimensions the functionf was represented in the same way as in one dimension: by
taking the value of the function at the local grid point. The two dimensional operatorL = ∇2 was
discretized using the nine point cross;

LU = L̂xxU + L̂yyU +O(∆x4,∆y4) , (4.8)

whereL̂xx andL̂yy are the one-dimensional4th order approximations given in Eqn (4.7). Written
out in all its gory detail,

LUi,j =
−Ui+2,j + 16Ui+1,j − 30Ui,j + 16Ui−1,j − Ui−2,j

12∆x4

+
−Ui,j+2 + 16Ui,j+1 − 30Ui,j + 16Ui,j−1 − Ui,j−2

12∆y4

+ O(∆(x4, y4)) .

(4.9)

4.2 Time Integration Methods

After the spatial operators are discretized we are left with a set of coupled ordinary differential
equations of the form

U t = F (U ,x, t) , (4.10)

whereF represents the spatially discretized right-hand-side of Eqns. (4.1). We may then use
numerical methods for ordinary differential equations to step the solution forward in time. Many
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methods will work but some choices are unsuitable because the time-step is restricted for numerical
stability of the full discretized PDE solution.

For one-dimensional simulations we used the ODE solver package SDRIV to integrate the cou-
pled system of Eqs. (4.10) [58]. For grid sizes of several hundred points, efficient and fast methods
are not crucial since the total computational time is low. The SDRIV package has the capability of
utilizing both explicit (the Adams methods) and implicit (Gear) methods. The error is controlled by
inputing a tolerance for the absolute and/or relative error per time step. The error is kept under this
tolerance by a combination of variable time step and variable method order schemes.

In two dimensions the set of ODE systems to be solved, typically of size400 × 400, required
a more efficient code to run in reasonable time on a workstation. For this reason a new code was
developed using fixed order methods to save on storage and reduce the computational overhead.
Either an explicit or implicit method was used depending on the parameter regime. Because the
model equations have second-order spatial derivative terms, numerical stability for explicit methods
requires that the time step be bounded by the square of the mesh size. In most cases the grid spac-
ings,∆x and∆y, wereO(1) so the time step was restricted to∆t ∼ O(1). For the computations
where the dynamics of the solution are fast, such as traveling waves or spiral waves, the time-step
restriction for solution accuracy was much less than∆t ∼ O(1), and explicit methods were used.
For patterns with long time scale slow dynamics, such as labyrinthine structures or slowly oscillat-
ing domains, often the time step restriction for accuracy is much larger thanO(1). In that case an
implicit method with a variable time-step scheme was used to remove the stability restriction.

For the explicit method, we used the second-order Adams-Bashforth method with a fixed time
step. For a time step of sizeh = ∆t the solution of Eq. (4.10) at time-stepn + 1 is in terms of the
solution at the previous two time steps,n andn− 1,

Un+1 = Un +
3h
2
Fn −

h

2
Fn−1 +O(h3) , (4.11)

whereFn = F (Un,x, tn). To start the integration from the initial conditions we setF−1 = F0 and
take one time step with the locally second order method

U1 = U0 + hF0 +O(h2) . (4.12)

For the implicit method we chose the second order backward differentiation formula (BDF2) [59]
which for fixed time-steph is

Un+1 −
2h
3
Fn+1 =

4
3
Un −

1
3
Un−1 +O(h3) . (4.13)

Once again to start from the initialt = 0 solution, we take a single step, (in this case Backward
Euler),

U1 − hF1 = U0 +O(h2) . (4.14)

The removal of the stability restriction doesn’t come for free. The solution of the discretized
equations is now given by a set of implicit nonlinear equations that must be solved at each time step.
These equations are solved by a multi-iteration Newton scheme where the nonlinear problem is
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linearized (the outer iteration) leaving the resulting linear problem to be solved (the inner iteration).
The method for the solution of the nonlinear problem is described in the next section.

Since the main advantage of the implicit method is to remove the stability time-step restriction,
we want to be able to take large time steps when the solution has slow dynamics. One method is to
stop the simulation, change the time step and restart. A better way is to implement a dynamically
adaptive time-step scheme. To do that we need the following pieces: a BDF2 formula for nonuni-
form time spacings, a method for measuring the solution error at each time step, and a method for
picking the size for the next step.

The variable step BDF2 formula is

Un+1 − αFn+1 = β0Un − β1Un−1 +O(r3) . (4.15)

The coefficients are

α =
2r + s

r(r + s)
, β0 =

(r + s)2

(2r + s)s
, β1 =

r2

(2r + s)s
, (4.16)

wherer = tn+1 − tn ands = tn − tn−1 are the sizes of the current and previous time steps.
The local error at the new time is estimated by comparing the solution,Un+1, with a predicted

solution. We used a linear predictor to get an estimate of the solution at the next time-step,

Upn+1 = γ0Un − γ1Un−1 +O(h2) . (4.17)

The coefficients areγ0 = (r + s)/s andγ1 = r/s which for a fixed time step of sizeh reduce to
the familiar values,γ0 = 2 andγ1 = 1. The absolute error between the predictor and the corrected
solution is measured by taking the scaled norm of the difference,

An+1 = ‖Un+1 − Upn+1‖ . (4.18)

In this case,‖ · ‖ represents the norm

‖U‖ = (∆x∆y
∑
ij

|Uij |2)1/2 , (4.19)

where∆x and∆y are the grid spacings in thex andy directions. The relative error is found by
scaling with the solution size,

Rn+1 =
An+1

‖Un+1‖
. (4.20)

The method for selecting a new time step is based on practical experiences developing ODE
codes [60]. It is not difficult to estimate time step needed to keep the error per unit step under a
given tolerance. The difficulty arises in keeping the time step from oscillating or varying radically
over short times. The first step is to make an estimate for the new step size necessary to keep the error
under a given tolerance. This new time step is then limited depending on its size and whether the
previous time step was successful or not. Since the predictor,Upn+1, has a leading error ofO(∆t2)
and the leading order of the corrector,Un+1, isO(∆t3), the relative error,Rn+1 is proportional to
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∆t2. Given an error tolerance per unit time step,ε, we chose the next time step conservatively and
require the relative error1/2 of the desired input error tolerance

σ =
∆tnew
∆told

=
(

ε

2Rn+1

)1/2

. (4.21)

The suggested ration of the time step change,σ = ∆tnew/∆told, is then restricted to be within a
range of values.

If Rn+1 < ε, the solution passes the error test, is accepted, and new time step is chosen. If
σ > 1 we can increase the time step. We do so only ifσ > 2, and then set∆tnew = 2∆told. If
σ < 1 the time-step must be decreased. We decrease the time step only ifσ < .9 and not by more
than a factor of1/2.

If R > ε, the solution fails the error test, a smaller time step is chosen, and the step is retaken.
The step size is reduced the factormax(0.9σ, 1/4). If the solution failed because either the nonlinear
solver or the linear solver failed to converge then the time step is reduced by1/4 and the step retaken.

4.3 Solution of the Nonlinear System

When using the implicit time integration method, on each time step we must solve the nonlinear
system of equations

U − αF (U) = Gn , (4.22)

whereGn represents the known right hand side of Eqn. (4.15) andU = Un+1. Then + 1 sub-
scripts will be dropped in this section to avoid notational clutter. We seek an iterative solution to
this equation by linearizingF (U) and using Newton’s method. With the iteration parameterk the
linearization is

F (Uk+1) = F (Uk) +
∂F

∂U
(Uk)(Uk+1 − Uk) . (4.23)

Substituting the linearization in (4.22) we have the iteration scheme

Uk+1 − α
[
F (Uk) +

∂F

∂U
(Uk)(Uk+1 − Uk)

]
= Un . (4.24)

Rearranging terms and subtractingUk from each side we get[
I − α∂F

∂U
(Uk)

]
(Uk+1 − Uk) = Un + αF (Uk)− Uk , (4.25)

whereI represents the identity matrix. If we let

Ak = I − α∂F
∂U

(Uk) , (4.26)

and define
ek+1 = Uk+1 − Uk , (4.27)
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we are left with the linear system of equations,

Akek+1 = rk , (4.28)

to be solved on each iteration. The residual vector,

rk = Un + αF (Uk)− Uk , (4.29)

is the right hand side of Eqn. (4.25). We iterate onk until the norm of the residual,‖rk‖, is smaller
than some given relative error tolerance.

In practice a modified Newton iteration was used. Since the evaluation of the Jacobian,Jk =
∂F
∂U (Uk), can be computationally expensive we instead fixJk = J0. Obviously if the solution
makes large changes during the iteration this approximation will be bad and the iteration may fail
to converge. Whenever two or more iterations are taken we estimate the convergence rate [61],

ρ =

(
‖Uk+1 − Uk‖
‖U1 − U0‖

)1/k

. (4.30)

If ρ > 0.9 or more thanMAXITER iterations have been taken, the iteration is considered to have
failed, the time-step is reduced by1/4, and a new step is taken. Typically the maximum number of
iterations allowed was4.

The steps to implement this method are as follows:

• Step 1: Select an initial guess forUk=0. We use the linear predictor (Eqn. (4.17)) and set
U0 = Up

• Step 2: EvaluateJ = ∂F
∂U (U0)

• Step 3: Evaluate the functionF (Uk)

• Step 4: Compute the residualrk = un + αF (Uk)− Uk

• Step 5: Check if‖rk‖ < εn. If true the iteration is converged.

• Step 6: Solve
[
I − αJ(Uk)

]
ek+1 = rk

• Step 7: Update the solution,Uk+1 = Uk + ek+1

• Step 8: Estimate the convergence rate,ρ =
(
‖Uk+1−Uk‖
‖U1−U0‖

)1/k

• Step 9: Ifk > MAXITER or ρ > 0.9 the iteration fails. If not setk = k + 1, and go to
Step 3

The error tolerance for the residual was chosen asεn = ε/3. The reasons for choosing the factor
1/3 are deep and mysterious [61, 62]. Since the iteration is terminated based on the norm of the
residualand not the solution difference,ek+1, this factor gives an extra margin to ensure that the
integrator error estimates are not polluted by the iteration error.
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For the most efficient code a specialized solver for the linear system,

Akek+1 = rk , (4.31)

would need to be coded, but we solved it instead by an iterative method contained in the software
package NSPCG [63]. The package contains a variety preconditioners and acceleration methods
and allows for storage of sparse matrices. Based on experiments with many different methods we
finally settled on using a incomplete LU preconditioner with zero level fill-in [64] and the GMRES
accelerator [65]. The GMRES algorithm is a particular implementation of a Krylov subspace solver
for nonsymmetric matrices.

The stopping condition for the linear iteration was modified from one contained in the package.
This modification was needed because the NSPCG code is limited to making relative error estimates.
Typically the stopping condition would be

‖(sk+1)2‖
‖(rk+1)2‖

< ζ , (4.32)

with ζ the input error tolerance andsk+1 the residual of the linear system,

sk+1 = rk −Akek+1 . (4.33)

The problem is that we are solving for thedifferenceof the solution,ek+1 = Uk+1 − Uk, and the
right-hand-side of the linear system,rk+1, goes to zero. Since we are working in finite precision,
when the solution is close to convergence, the error we are measuring using this test is mostly due
to roundoff. The code was modified to measure the relative error with respect to the solution size
Uk, by the test

‖(sk+1)2‖
‖(Uk+1)2‖

< ζ , (4.34)

where we choseζ = εn/100, and limited the number if iterations to a maximum of20.
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Conclusion

In this dissertation we have investigated pattern formation in reaction-diffusion systems. We used
a simple and well known model to explore different pattern behaviors in one and two dimensions.
The approach we took is different than many earlier studies; we focused our analysis on isolated
front structures as the basic building blocks of more complex patterns. We found that the number
of front solutions depends on the system parameters: at the NIB bifurcation a single stationary
Ising front becomes unstable to a pair of counterpropagating Bloch fronts. This multiplicity of
fronts allows the formation of traveling patterns. Near the NIB bifurcation the front speed has a
multivalued dependence on system perturbations. Perturbations, such as curvature or an external
convective field, may induce transitions that reverse the direction of propagating front segments and
nucleate spiral-vortex pairs. The nucleation events drive the formation of complex patterns such as
spot-splitting and spiral turbulence. The speed vs. curvature relation also shows where planar fronts
are unstable and grow to form two-dimensional labyrinthine patterns.

The results in this dissertation are derived for the case of bistable reaction kinetics. Far from
equilibrium both Hopf-Turing and excitable systems may show the same behavior. In those cases
the system has only one uniform steady state and cannot support isolated fronts. But, far from
equilibrium, sharp fronts occur as parts of larger domain structures. These fronts, although not
isolated, may also be influenced by the NIB bifurcation. In particular, there may be transitions from
stationary patterns far from onset of the Turing instability; on approach to the NIB bifurcation the
domains first become unstable to oscillations and then form traveling patterns. Knesset al. have
studied the bifurcation structure of traveling waves in for the case ofε� 1 andδ = 0 while varying
the reaction kinetics bewtween exitable and bistable scenarios [66].

The NIB bifurcation for the model equations was derived using asymptotic methods and ver-
ified numerically in theε − δ plane. At the NIB bifurcation the coexistence of front solutions is
responsible for the formation of traveling patterns. In the Ising regime there are only single front
structures that combine to form, in one dimension, either stationary or oscillating domains but never
traveling pulses. Ifδ is small, fronts propagating in opposite directions annihilate each other and
the system goes to the uniform up or down state. Beyond the NIB bifurcation, in the Bloch regime,
the multiple fronts combine as a front and a back to form traveling domains. Thus, the NIB front
bifurcation indicates where persistent traveling patterns form.
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One-dimensional oscillating pulses in uniform systems occur in the Ising regime near the NIB
bifurcation. This type of oscillation, or breathing motion, was first observed by Koga and Kuramoto
in an infinite system [50]. Later Nishiura and Mimura performed an analytic study of oscillations
in a finite medium [49]. They found oscillations persisted for parameters well beyond the onset
of the breathing motion. We found instead that as we reduceε from the onset of the oscillations,
the oscillation amplitude grows until the solution collapses to one of the uniform states. For single
domain solutions oscillations never occurred beyond the NIB bifurcation. Oscillations in periodic
patterns, however, may be stable in the Bloch regime and coexist with traveling waves [B].

The labyrinthine patterns found in the Ising regime have also been studied by Petrich and Gold-
stein [67] using a nonlocal interface model. The model was derived for parameters far into the
Ising regime where the reaction-diffusion equations reduce to a gradient system. In that regime
the equation for the boundary between domains of high and low chemical concentrations leads to a
space-filling labyrinthine pattern. We expect the qualitative predictions of that model to hold closer
to the NIB bifurcation under two conditions: domain fusion, which changes the topology of the
front curve, does not take place, and nongradient effects, such as front transitions, do not appear. It
may be possible to modify the interface model to include nongradient effects.

Spot splitting has been studied numerically by Pearson [31, 23] and analytically, in one space di-
mension, by Reynoldset al.[32]. Lee and Swinney also found replicating pulses in one-dimensional
simulations of their four variable FIS reaction model [24]. In that case, the parameters of the model
were set so the reaction kinetics were monostable. No one-dimensional analog of spot splitting
exists in the present model, at least for the parameter regime where splitting in two dimensions has
been observed. The splitting studied in this dissertation is a purely two-dimensional effect where
curvature and front interactions play key roles. We believe these factors also have important roles
in the two-dimensional spot splitting simulations by Pearson.

The breakup of spiral waves results from local front transitions that become feasible near the
NIB bifurcation. The transitions can be induced by general perturbations, either extrinsic or in-
trinsic. In Section 3.6 and [36] we studied front transitions caused by the perturbation of external
advective fields. This type of spiral breakup is seen in experiments with the Belousov-Zhabotinski
reaction in a thin liquid layer. The target and spiral waves are destroyed by convective motion when
the cover of the dish is removed [51, 52].

The transverse instability also can induce local front transitions by creating negatively curved
front portions [D]. The geometry of the negatively curved cusp-shaped regions encourages the
growth of the inhibiting field and the nucleation of a vortex pair. Another important mechanism
for nucleating vortices is the interaction of fronts. Front interactions act directly or indirectly (by
flattening curved fronts) to induce transitions. Other studies of spiral wave instabilities have focused
on the linear stability and bifurcations of uniformly rotating spiral waves [68, 69]. It would be
interesting to investigate the relevance of the front transition mechanisms to those studies and recent
studies of spiral turbulence in surface reactions [70] and in cardiac tissue models [71, 72, 73, 74, 75].

Many of the observations made here have also been found in the FIS reaction. These include
labyrinthine patterns [22], spot splitting [23], and front transitions induced by front interactions [24].
Further comparative investigation should include experimental testing for the existence of a NIB
bifurcation, and examination of the experimental observations in relation to the location of the
bifurcation. Measurements of the front velocity near the NIB bifurcations may show a multivalued
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speed vs. curvature relation. Current experimental studies are being performed to measure the front
speed vs. curvature for isolated chemical spots [76].

We expect similar complex spatio-temporal patterns to be found in other systems exhibiting NIB
bifurcations. Periodically forced oscillatory systems [34] and liquid crystals subjected to rotating
magnetic fields might be good candidates [77, 78].

Many open questions still remain. Numerical simulations have shown that front interactions
may lead to front repulsion and oscillatory domains. For the oscillating domains in a uniform
system [B], a plot of the front speed vs. interfront spacing indicates a transition between the two
branches of left and right propagating front solutions. An analysis of front interaction effects on
front speeds may provide yet another example of a perturbation that produces a multivalued speed
relation. In addition to further understanding the mechanism behind these oscillations, an analysis
of the front interactions is necessary to fully describe the complex interactions in the spiral turbulent
regimes.

It may be possible to dynamically control patterns using appropriate perturbations near the NIB
bifurcation. Since the speed vs. perturbation relation is multivalued there, perturbations such as an
external electric field, may cause regular patterns to break. If the perturbation is sufficiently con-
trolled it may provide a way to dynamically nucleate or annihilate spiral waves at specific locations
in the system.
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Appendix A

Domain Walls in Nonequilibrium
Systems and the Emergence of Persistent
Patterns

The material for this Appendix is found in Ref. [79].
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Appendix B

Pattern Formation in Dissipative
Nonvariational Systems: The Effects of
Front Bifurcations

The material for this Appendix is found in Ref. [80].
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Appendix C

Spatiotemporal Oscillations in a
SemiconductorÉtalon

The material for this Appendix is found in Ref. [81].
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Appendix D

From Labyrinthine Pattterns to Spiral
Turbulence

The material for this Appendix is found in Ref. [36].
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Appendix E

Scaling of the Semiconductor Equations

The model equations for the semiconductor resonator as proposed in the original physical variables
are

Nt = αI(N,T )/h̄ω −N/τN +D∇2N ,

Tt = qN/CρτN − (T − T0)/τT + κ∇2T ,
(E.1)

with the light intensity in the cavity given by

I(N,T ) =
I0(1−R)(1− e−αl)(1 +Re−αl)

(1− 2Re−αl cos (4πn(N,T )l/λ) +R2e−2αl)αl
, (E.2)

and the refractive index
n(N,T ) = n0 − σN + γT . (E.3)

The physical parameters and their typical values are found in Table 1.1.
First scale the independent and dependent variables as follows:

x̄ = x/LN , t̄ = t/τN , u = N/no , v = (T − T0)/to , (E.4)

whereLN =
√
DτN , andn0 andt0 are yet to be determined. This produces the system

ut̄ =
τNI0

lh̄ωno
W (u, v)− u+∇2u ,

vt̄ =
qno
Cρto

u− τN
τT
v +

κ

D
∇2v .

(E.5)

Assign the new variablesτ = τT /τN andδ = κ/D. In theu equation we set

τN
lh̄ωno

= 1 , (E.6)

or
no =

τN
lh̄ω
∼ 5× 1014 . (E.7)
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In thev equation we have
qno
Cρto

=
τN
lcρto

= ε ∼ 10−6 , (E.8)

where we chooseto ∼ 30oK. Since1/τ ∼ 10−3 → 10−6 let τ → ετ (measureτ in units ofε).
These scalings leave us with a nondimensionalized version of the model equations where the

variablesu andv are order one andε is a small parameter.

ut = I0W (u, v)− u+∇2u ,

vt = ε(u− v/τ) + δ∇2v ,
(E.9)

W (u, v) =
(1−R)(1− e−αl)(1 +Re−αl)

(1− 2Re−αl cos (n(u, v)) +R2e−2αl)
, (E.10)

n(u, v) = β − βNu+ βT v , (E.11)

For theW (u, v) equationβ, βN , andβT follow from the scaling ofN andT in the original equa-
tions.

ε - τN/lcρto

τ - cooling time/recombination time

I0 - input intensity

β - initial refractive index (detuning)

δ - ratio of diffusion coefficients

βN (> 0) - carrier contribution to refractive index index

βN (> 0) - temperature contribution to index
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