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Abstract

We present a new set of kinematic equations for front motion in bistable media. The equations
extend earlier kinematic approachcs by coupling the front curvature with the order parameter
associated with a parity-breaking front bifurcation. In addition to naturally describing the core
region of rotating spiral waves, the cquations can be used to study the nucleation of spiral-wave
pairs along uniformly propagating fronts. The analysis of spiral-wave nucleation reduces to the
simpler problem of droplet, or domain, nucleation in one space dimension. (©) 1998 Elsevier
Science B.V. All rights reserved.

1. Introduction

The onset of spatio-temporal disorder in reaction—diffusion systems is often accom-
panied by the spontaneous nucleation of spiral waves. The conditions for spiral-wave
nucleation, mechanisms behind it, and implications on the resulting dynamics have been
studied extensively [ 1-6]. Yet detailed studies of the nucleation process itself are still
lacking. One difficulty in carrying out such studies stems from the two-dimensional
structures of spiral waves. In this paper we report on the derivation of new kine-
matic equations for front motion in bistable media which reduce the two-dimensional
spiral-wave nucleation problem to a one-dimensional droplet nucleation problem [7,8].
We use the kinematic equations to demonstrate the destabilization of traveling V-shape
solutions to spiral nucleation.

The derivation is carried out in a parameter range that includes a pitchfork front
bifurcation called a nonequilibrium Ising-Bloch (NIB) bifurcation [9-12]. At a NIB
bifurcation, a stationary “Ising” front loses stability to a pair of counter-propagating
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Fig. 1. (a) The nonequilibrium Ising-Bloch (NIB) front bifurcation. The solid line represents a branch of
stable front solutions with speed ¢. At the bifurcation point, = %, the stationary solution becomes unstable
to a pair of counter-propagating fronts. (b) The NIB front bifurcation and planar front transverse instability
boundaries in the ¢ — ¢ parameter plane. The thick line is the NIB bifurcation, dz(z), and the dashed lincs
are the boundaries for the transverse instability of Ising, d;(¢), and Bloch, dg(&), fronts. Above these lines
planar fronts are unstable to transverse perturbations. The thin lines arc the approximations to the transverse
instability boundaries obtained from the kinematic equations. Parameters: a; = 4.0, a¢ = 0.

“Bloch” fronts as a parameter o is decreased past a critical value (Fig. 1a). The coexis-

tence of the two Bloch fronts beyond the bifurcation allows for nucleation events where

a front line segment of one Bloch type undergoes a transition to the other Bloch front.
The kinematic description of front motion consists of the following equations:

— An equation for the order parameter, Cp, associated with the NIB bifurcation:
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— A geometric equation for the front curvature, x:
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— An equation relating the normal front velocity C,, the curvature x, and the order
parameter Cy:

C,=Cy—Dr. (3)

In these equations s is the front arc length and the critical parameter value «,. designates
the NIB bifurcation point. The kinematic equations are derived for a FitzHugh-Nagumo
model with a diffusing inhibitor. They generalize an earlier kinematic approach [13,14]
by treating Cy as an independent dynamic mode rather than a constant.

The order parameter equation given by Eq. (1) yields the bifurcation diagram of
Fig. la for planar (not curved) front solutions in a symmetric system (yo = 0). The
two Bloch branches pertain to high and low Cj values, Cy = c(;* = /(% — 2)/p.
Because of the coupling between the order parameter and curvature equations, curvature
variations are capable of nucleating low-Cy segments (droplets) in regions of high Cj.
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Droplet nucleation in the kinematic equations corresponds to spiral-wave pair nucleation
in the physical two-dimensional plane.

Spatially uniform front transitions induced by curvature, producing for example
breathing spots, have been studied in Refs. [15,16]. The present paper is an exten-
sion of this earlier work to nonuniformly curved fronts. Complementary results to
those reported here appear in Ref. [17].

2. Derivation of the kinematic equations

The curvature equation given by Eq. (2) follows from purely geometric consider-
ations [13,14, 18—20]. The normal velocity relation, Eq. (3), and the order parameter
equation given by Eq. (1) can be derived using the FitzZHugh—Nagumo reaction-diffusion
model with a diffusing inhibitor,

— = u—i =)+ "V,

ﬂ—t:u—alvfao+vzv, 4)
0

where u and v, the activator and the inhibitor, are real scalar fields and V2 is the
Laplacian operator in two dimensions. Parameter a, is chosen so that Eq. (4) describes
a medium with two stable spatially uniform states: an up state (v_,r;) and a down
state (u_,v_). Ising and Bloch front solutions connect the two uniform states (uy,v.)
as the spatial coordinate normal to the front goes from —oc to +oc. The remaining
parameter space is spanned by ¢, ¢ and 4o, or alternatively by n = Ved, u =g/, and
ay. Note the parity symmetry (u,v) — (—u,—v) of Eq. (4) for qp = 0.

The NIB bifurcation line in the ¢ — ¢ plane for ap = 0 is shown in Fig. 1b. For g <1
it is given by & = &¢(¢) = n’/e, or § = ., where n. = 3/2v2¢* and ¢* = a, + 1/2
[11]. The single stationary Ising front that exists for n > #,. loses stability to a pair of
counter-propagating Bloch fronts at # = 5.. Beyond the bifurcation (# < #.) a Bloch
front of an up state invading a down state coexists with another Bloch front of a
down state invading an up state. Also shown in Fig. |b are the transverse instability
boundaries (for ap = 0), & = &,(¢) = ¢/n? and § = dz(e) = n.//¢, for Ising and Bloch
fronts, respectively. Above these lines, d > d; g, planar fronts are unstable to transverse
perturbations [6,21]. All three lines meet at a codimension 3 point P3: ¢ =52, § = 1,
ag = 0.

The following assumptions are used in deriving Eqgs. (3) and (1) pu = g/0 <1,
the front speed ¢ is small, the front is weakly curved, and curvature variations along
the front are weak. The second assumption is met by considering nearly symmetric
(Jag] < 1) systems and restricting parameter values to the Ising regime or the vicinity of
the NIB bifurcation where the front speed is ¢ oc /1, — <€ 1. The last two assumptions
are met by considering parameter values below or just beyond the threshold for the
transverse instability of fronts.
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The kinematic equations are derived by transforming to an orthogonal coordinate
system that moves with the front and using singular perturbation theory with u =
¢/0 <1 as a small parameter [15]. The analysis of the narrow front core region, where
u changes on a scale of order \/u, gives Eq. (3) with

3 -
Cy = ———=rs(s,1), D=o"", 5
0 2 7(8,1) (5)

where v,(s, ) is the approximately constant value (in the direction normal to the front)
of the inhibitor v in this region.

Away from the front core, where both # and v vary on a scale of order unity, a free
boundary problem is obtained by using the solutions u.(v) of u — u* — v = 0 in the
inhibitor (v) equation. Matching the solutions from each side of the front at the front
core (in the limit u — 0) gives the equation
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Eq. (6) coincides with Eq. (1) using the following identifications: Cy = —(3/11\/5)1{/,
%= qV2/qn?, % = 2/qne, B = % v =21 —67"), and yy = 20.qap. More details
about the derivation appear in Ref. [17].

3. Numerical solutions of the kinematic equations
3.1. Spiral waves

Consider a front solution in the kinematic equations that connects the state Cy =
Cy, Kk =0, at s = —oo with the state C;, = C,, k = 0, at s = +oo, where for a
symmetric model (ag =0 or 7y =0) Cr=+ (2. — a)/p. Fig. 2a shows such a solution
obtained by numerically integrating Eqs. (1)-(3). As demonstrated in Fig. 2b this front
solution of the kinematic equations, given by Eqs. (1)—(3) represents a spiral-wave in
the FitzHugh—Nagumo model Eq. (4). Unlike earlier kinematic approaches [13,14] the
spiral core is naturally captured.

3.2. Traveling V-shape solutions and spiral-wave nucleation

For Cy constunt, the curvature equation given by Eq. (2) and the normal velocity
relation Eq. (3) have a family of traveling V-shape solutions [20,22]
bZ
~ Co -+ Cy(0) cosh(bs)

where C,(0) = Co — Dx(0) is an arbitrary constant. The traveling V-shape solution,
Eq. (7), is also an exact solution of the kinematic Egs. (1)—(3) for = 1. In that case

K(s) = bt = C,(0)* ~ C§ . (7
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Fig. 2. A front solution to the kinematic equations given by Egs. (1)-(3). (a) The order parameter Cy and
the curvature wx along the arc length s. (b) In the x -y plane the front solution corresponds to a rotating
spiral wave. The shaded (light) region corresponds to an up (down) state. Parameters: ) = 4.0, ag = 0,
¢ =0.01234, 6 = 1.0.

7 = %(l =67y = 0 and the order parameter equation, Eq. (1), decouples from the
curvature equation for constant Cy solutions. The specific values Cy can assume are
determined as solutions of the cubic equation (z, — 2)Cy — BC3 + 79 = 0.

We have also found stable traveling V-shape numerical solutions for J # I. Fig. 3a
shows a V-shape Bloch front traveling stably at constant speed. When approaching
the NIB bifurcation (by increasing ¢ and/or d) this solution becomes unstable and nucle-
ates spiral-wave pair. The time evolution of an unstable V-shape solution is shown in
Fig. 3b-d.

We carried out numerical solutions of the FitzHugh-Nagumo model, Eq. (4), to test
the prediction, based on solutions of the kinematic equations, that traveling V-shape
solutions are destabilized as the NIB bifurcation is approached. Choosing parameter
values close to those of Fig. 3, an initial V-form is indeed unstable and a pair of
spiral-waves nucleate in the region of highest curvature as shown in Fig. 4. After the
spirals form, the resulting traveling fronts may either repel each other or reconnect and
the V-shape solution will continue to propagate with the possiblé nucleation of new
spiral pairs. Interactions between front segments are not included in the kinematic Egs.
(1)—(3), so the resulting evolution of the spiral pair and possible front reconnections
cannot be captured. Front interactions have been studied recently in the fast inhibitor
limit (5> #,.) [23].

4. Conclusions
The kinematic equations presented in this paper extend an earlier kinematic approach

using the curvature equation given by Eq. (2) and a linear relation between the normal
velocity and curvature [13,14]. Indeed, far into the Bloch regime (« significantly smaller
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Fig. 3. Nucleation of a spiral-wave pair from an initial traveling V-shape front. Left column: the Cy(s) and
k(s) profiles. Right column: the front line shape in the x-y plane. Parameters: a; = 4.0, ay = —0.0001,
&= 00115, 6 = 1.063.

Fig. 4. Spiral-wave nucleation from an unstable traveling V-shape solution of the FitzHugh-Nagumo equa-
tions (4). The initial traveling V-shape solution (a) slows down (b) at the high curvature region and nucleates
a pair of spiral waves (c). Depending on the parameters the resulting fronts may either repel or reconnect
(d). Parameters: ¢ = 00122, § = 1.064, a; = 4.0, ag = —0.0001.



124 A. Hagbery, E. Meron! Physica A 249 (1998) 118--124

than 2.), Cy is no longer a slow degree of freedom and can be eliminated adiabatically.
Egs. (1)-(3) then reduce to a multivalued algebraic relation Cy = Cy(x) whose three
branches (two Bloch and one Ising) give approximately linear C,—x relations [21].

But close to the NIB bifurcation Cy becomes an active degree of freedom and
the earlier approach, often called the “geometric approach”, is no longer valid. The
new kinematic equations capture the core structures of spiral waves and spiral-wave
nucleation processes. Since one space dimension has been eliminated in deriving the
kinematic equations, the two-dimensional problem of spiral-wave nucleation has been
reduced to a simpler droplet nucleation problem in one space dimension.
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