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Vortex-Pair Dynamics in Anisotropic Bistable Media: A Kinematic Approach
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In isotropic bistable media, a vortex pair typically evolves into rotating spiral waves. In an
anisotropic system, instead of spiral waves, the vortices can form wave fragments that propagate
with a constant speed in a given direction determined by the system’s anisotropy. The fragments may
propagate invariably, shrink, or expand. We develop a kinematic approach for the study of vortex-pair
dynamics in anisotropic bistable media and use it to capture the wave fragment dynamics.
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Spiral vortices are common spatiotemporal patterns in
a variety of oscillatory, excitable, and bistable systems.
Numerous studies have been devoted to their structure,
stability, formation mechanisms, mutual interactions,
and control techniques. In bistable media spiral vortices
are closely related to the nonequilibrium Ising-Bloch
(NIB) bifurcation, a pitchfork front bifurcation that ren-
ders a stationary “Ising” front unstable and leads to a pair
of counterpropagating ‘“Bloch™ fronts. The NIB bifurca-
tion has been observed in various systems, including
liquid crystals [1] and chemical reactions [5,6], and has
been the subject of many theoretical studies [4].

The NIB bifurcation designates the onset of traveling
waves in general, and spiral waves in particular. A num-
ber of other pattern formation phenomena in isotropic
bistable systems can be attributed to the NIB bifurcation.
They include temporal events, such as when one Bloch
front transforms into the other; this process changes the
direction of front propagation. These transformations can
be induced by an increase in front curvature, front inter-
actions, and other disturbances. When the transformation
takes place uniformly along the front line, it leads to
phenomena such as reflection of fronts and breathing
patterns [5]. When the transformation is local, it leads
to the nucleation of spiral-vortex pairs [6].

Front reflection, breathing structures, and spiral-vortex
nucleation may occur in anisotropic bistable media as
well. The anisotropy of the system, however, may induce
additional pattern formation phenomena not found in
isotropic systems [7]. An intriguing example is traveling
wave fragments observed in catalytic reduction of NO
with hydrogen on a Rh(110) surface [8] and in catalytic
oxidation of CO on Pt(110) [9]. These fragments travel at
constant speeds in specific directions and, depending on
parameters (e.g., hydrogen partial pressure in the NO
reduction reaction), either shrink or expand. The phe-
nomenon has been reproduced in simulations of a reac-
tion-diffusion model representing an excitable medium
with nonlinear anisotropic diffusion [8].
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In this Letter we study vortex-pair dynamics in two-
dimensional anisotropic bistable media and identify a
general mechanism for traveling fragments. We show
that traveling fragments develop when Bloch fronts in a
given direction transform into Ising fronts in the orthog-
onal direction. The origin of the anisotropy appears ir-
relevant as long as it is capable of inducing the change of
front type upon rotation by /2.

We study vortex-pair dynamics by deriving kinematic
equations for a front with contour lines that form a closed
loop. Equations of this kind, but for isotropic systems and
infinite front lines, have been derived in Ref. [6]. They
consist of coupled integro-differential equations for the
front curvature and front velocity where the independent
variables are the arclength along the front line s(z) and
time 7. We now extend these equations to fronts forming
closed loops in anisotropic media using, as a case study,
the FitzHugh-Nagumo model with diffusion anisotropy.

The anisotropic FitzHugh-Nagumo model is
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where u is the activator and v the inhibitor, and the
anisotropy is quantified by the parameter d. The parame-
ters ag and a; are chosen so that Eqgs. (1) describe a
bistable medium with two stable uniform states,
(uy,vy)and (u_, v_). For ay = 0 the two uniform states
are symmetric, (u,,v,) = —(u_, v_). Ising and Bloch-
front solutions connect these states as the spatial coordi-
nate normal to the front goes from —oo to +o0. For a
symmetric system (a, = 0) the two Bloch fronts propa-
gate at the same speed (but in opposite directions). We
consider the sharp interface regime €/8 < 1, in which
the activator u varies steeply across a front while the
inhibitor v varies smoothly. We further choose parameter
values so that the isotropic system (d = 0) is near the NIB
bifurcation [6], and the effect of switching d on and
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rotating the angle 6 by 7/2 is to transform Ising fronts,
propagating in the x direction, to Bloch fronts, propagat-
ing in the y direction.

We parametrize the front loop (identified with the
u = 0 contour line) by the ratio, o(s) = s(¢)/L(z), of the
arclength with respect to the total loop length L(r). We
assume that this ratio is independent of time (this
amounts to a proper choice of the tangential front veloc-
ity) [10]. The front loop dynamics is governed by the
equation

— =C,;F+ C,$, )

dt
where X (o, 1) is the instantaneous position vector of the
front, (o, f) and §(o, r) are unit vectors perpendicular
and tangent, respectively, to the front line, C, (o, 1) is the
normal front velocity, and C,(o, ) is the tangential front
velocity. The normal front velocity is derived from the
anisotropic FitzHugh-Nagumo model using singular per-
turbation theory in a parameter range where €/8 < 1 [6].
It reads

Cn = pCO - (1 - A)Kr (3)

where « is the front curvature, A =1 — (1 + d)/8p?,
p = /(1 + dcos?6), and 0 is the angle between § and
the x axis. Far from the NIB bifurcation C is constant
and represents the velocity of a planar front propagating
in the y direction (@ = 0). Near the NIB bifurcation C,
becomes a slowly varying order parameter [6] satisfying
Eq. (6) below. It is related to the value v of the inhibitor
at the front position (where u = 0) via Cy = —3vf/n\/§.
The tangential front velocity (which does not have a
physical meaning) is determined by the parametrization
we chose for the front loop. It reads [10]

C,=oL f KC,do' — L f " kC,do, 4)
0
where « is the front curvature and the first integral in
Eq. (4) is over the entire front loop (0 = o = 1).
The instantaneous values of the front curvature x and
the order parameter C, along the front loop are deter-
mined by solving the following system:
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where L(z), the total loop length, is determined by
oL _ LjéKCndO", @)
Jt

and the angle 6(o, 1) is related to the curvature via
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In Eq. (6) @ = 7v2/pgmi, a. = v2/qn., B = n*/6mZ,
Y =2/14, vo = 2v2a0/n, 1 = Jed, n. =3/2v2¢’,
and g = y/a; + 1/2. Equation (5) for the curvature fol-
lows from pure geometrical considerations [11-13].
Equation (6) has been derived for the anisotropic
FitzHugh-Nagumo model (using a singular perturbation
analysis), but the form of this equation is general and
expected to apply, apart from the angular dependence, to
other anisotropic bistable systems that go through the
NIB bifurcation.

According to Eq. (6) the threshold of the NIB bifurca-
tion for a symmetric system (ay = 0) is given by a = «a,
or 1 = pn,.. The conditions for having Ising fronts prop-
agating in the x direction (# = 7/2) and Bloch fronts
propagating in the y direction (§ = 0) are

n.<n<nNl+d )

The transformation from Ising front to Bloch fronts, as
the angle 6 is rotated from zero to 7r/2, is best illustrated
by drawing velocity-curvature relations at various 6 val-
ues. These relations are obtained from Eq. (6) by setting
all derivatives to zero, solving for C, in terms of «, and
inserting the result in Eq. (3). Figure 1 shows such rela-
tions for d values satisfying Eq. (9). The solid lines refer
to propagation in the y direction. They describe a pair of
stable Bloch fronts and an unstable Ising front. The
dashed line refers to propagation in the x direction and
describe a stable Ising front. For the chosen symmetric
condition, yy = 0 (or ay = 0), the planar Ising front is
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FIG. 1. Relationships between the normal velocity C, and
curvature « in orthogonal directions that yields traveling
wave fragments. The curves are obtained by setting all the
derivatives to zero in Eq. (6), solving for Cy, and then using
Eq. (3). The dashed curve is for fronts propagating in the x
direction and indicates the existence of a single stable Ising
front (C = k = 0). The solid curve is for a front propagating
in the y direction and indicates a pair of stable Bloch fronts
(C, = =3, k =0). Parameters: € = 0.07, 6 = 1.1, a9 =0,
a;=2,d=1
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FIG. 2. Formation of a pair of spiral waves in the Bloch
regime of the isotropic case. (a) Solutions to the kinematic
equations (5)—(7) at t = 0 (bottom), t = 2 (middle), and t = 4
(top). (b) The corresponding solutions in the x —y plane.
Parameters: € = 0.035, 6§ = 1.1, a5 =0, a;, =2,d = 0.

stationary, but a positively curved Ising front propagates
at a negative velocity. The negative slopes of the solid and
dashed lines imply stability to transverse perturbations.

We recall [6] that the existence of counterpropagating
Bloch fronts allows for traveling waves, in general, and
spiral waves, in particular. A spiral-wave solution of
the FitzHugh-Nagumo model (or any other reaction-
diffusion system) corresponds to a front solution of the
kinematic equations. Figure 2 shows the dynamics of a
spiral-vortex pair in the isotropic case (d = 0). Solutions
of the kinematic equations (5)—(7) are shown in Fig. 2(a),
while the corresponding front curves in the physical x —
y plane, obtained from Eq. (2), are shown in Fig. 2(b).
The vortex pair appears in Fig. 2(a) as a pair of fronts
bounding a domain of one Bloch front surrounded by the
other Bloch front. In the x — y plane, the initial vortex
pair forms a front loop that evolves into a pair of counter-
rotating spiral waves.

Similar initial conditions in the isotropic case (d = 0),
but for parameters corresponding to the Ising regime,
lead to uniform velocity and curvature solutions of the
kinematic equations as Fig. 3(a) shows. In the x — y plane,
these solutions describe the convergence to a shrinking
circular loop or, for ay > 0 and not too small, to an
expanding loop as Fig. 3(b) shows.

We now consider an anisotropic system with d satisfy-
ing Eq. (9) and a velocity-curvature relation for a
symmetric system (ag = yo=0) as in Fig. 1. The
Bloch fronts propagating in the y direction can form
traveling waves, but no traveling waves can develop in
the orthogonal x direction. As a result, and unlike the
isotropic case, a vortex pair forming an initial loop as in
Fig. 2(b) will not develop into a pair of counterrotating
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FIG. 3. Formation of an expanding circular loop in the Ising
regime of the isotropic case. (a) Solutions to the kinematic
equations (5)—(7) at t = 0 (bottom), t = 3 (middle), and r = 15
(top). (b) The corresponding solutions in the x —y plane.
Parameters: € = 0.14, 6 = 1.1, a9 = 0.1, a;, =2,d = 0.

spiral waves. It will instead form a traveling wave frag-
ment propagating at constant speed without changing its
shape as Fig. 4(b) shows. The corresponding solutions of
the kinematic equations are shown in Fig. 4(a).
Breaking the symmetry between the two Bloch
fronts in the y direction by choosing nonzero vy, (ag)
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FIG. 4. A traveling fragment in the symmetric (ay = vy = 0)
anisotropic case. For the symmetric case, the Bloch fronts that
make up the front and back of the fragment travel with the
same speed. (a) Numerical solutions to the kinematic
equations (5)—(7) at t = 0 (bottom), t = 25 (middle), and ¢ =
50 (top). (b) The fragment in the x — y plane shown at different
times on the same plot. The solutions are given for = 0 to
t = 50 in steps of At = 5. Parameters: € = 0.07, 6 = 1.1, ag =
0,a,=2,d=1.
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FIG. 5. Expanding and shrinking fragments obtained

by solving the kinematic equations (5)—(7) numerically.
(a) Shrinking fragment in the x — y plane shown at different
times on the same plot. The leading Bloch front is slower than
the trailing Bloch front. The solutions are given for r = 0 to
t =14 in steps of Ar=3.5. Parameters: € = 0.07, 6 = 1.1,
ag = —0.01, a; = 2,d = 1. (b) Expanding fragment in the x —
y plane shown at different times on the same plot. The leading
Bloch front is faster than the trailing Bloch front. The solutions
are given for ¢t = 0 to ¢t = 30 in steps of Az = 7.5. Parameters:
€e=007,6=11,ay=001,a, =2,d=1.

values leads to traveling fragments that still propagate at
constant speeds but either shrink (yy <<0) or expand
(yo > 0), as Fig. 5 demonstrates. The edges of an expand-
ing fragment trace straight lines and form a conelike
shape. These results are in agreement with the qualitative
experimental results reported in Ref. [9]. A fragment
extends its length when the leading Bloch front propa-
gates faster than the trailing one and reduces its length in
the opposite case.

Traveling fragments may not appear only as solitary
waves. The condition by which Bloch fronts transform to
Ising fronts upon rotation by 77/2 may also lead to
“stratified chaos” [7], a dynamic state in which the dis-
order is confined to one direction (the direction of Bloch-
front propagation). Traveling fragments (‘“‘blobs” in
Ref. [7]) in this state repeatedly nucleate and annihilate
and thereby nurture the chaotic dynamics. In this regard
traveling fragments play a similar role to that of spiral
vortices in isotropic media, whose spontaneous nuclea-
tion leads to spiral turbulence [14]. The unidirectional
motion of the fragments preserves the stratified structure
of the disordered pattern.

In this Letter we used a kinematic approach to study
vortex-pair dynamics in anisotropic bistable media and
proposed a general mechanism for traveling fragments.
The advantage of the kinematic approach lies in the
universal form of the kinematic equations near the NIB
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bifurcation and, thus, in the generic nature of the results
this approach yields.
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