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Abstract
The development of kernel-based inhomogeneous random graphs has provided models

that are flexible enough to capture many observed characteristics of real networks, and that

are also mathematically tractable. We specify a class of inhomogeneous random graph

models, called random kernel graphs, that produces sparse graphs with tunable graph prop-

erties, and we develop an efficient generation algorithm to sample random instances from

this model. As real-world networks are usually large, it is essential that the run-time of gen-

eration algorithms scales better than quadratically in the number of vertices n. We show that

for many practical kernels our algorithm runs in time at mostO(n(logn)2). As a practical

example we show how to generate samples of power-law degree distribution graphs with

tunable assortativity.

1 Introduction
The broad adoption of graphs as a modeling language, together with the widespread impor-
tance of applications in social, computer, and biological systems [1], has resulted in many
efforts to develop random graph models [2, 3]. Random graph models give insight into net-
work structures and are often used for null models, anonymization, and studying dynamical
processes [4–7]. Large-scale graphs are also used to construct benchmarks for testing algorithm
performance on high-performance computing systems [8, 9].

A common goal in constructing random graph models is to match properties of real-world
graphs. One approach is to explicitly specify a distribution of graphs with expected graph prop-
erties that can be analyzed. Important examples of this approach include Erdős-Rényi random
graphs [10, 11], Chung-Lu (also called expected degree) random graphs [12], and graphs with
a specified degree distribution [13]. To capture even more general graph features Söderberg
introduced a model of sparse inhomogeneous random graphs and showed that it could pro-
duce a wide variety of sparse graphs [14]. Bollobás, Janson, and Riordan (BJR) formalized and
extended the model of Söderberg by emphasizing that the random graphs could be defined in
terms of a kernel [15]. They also focused the model on sparse graphs with O(n) edges and n
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vertices. The flexibility inherent in the kernel approach generalizes well-known models of
sparse graphs while remaining mathematically tractable; the BJR model can produce graphs
with power-law degree distributions [15], and graphs with tunable assortativity [16].

Models from which random uniform samples can be efficiently generated are even more use-
ful. In particular, the efficient generation of random graph instances allows researchers to simu-
late complex graph phenomena and dynamics for which mathematical analysis is difficult or
impossible [17]. There are models, such as the space of all graphs with a given degree sequence
and clustering coefficients, from which we do not know how to sample uniformly. Simulation of
such models is then confined to the regions of the distribution currently available to us.

Though the BJR model appears to be so general as to preclude an efficient, general generation
algorithm, we provide a fast generation algorithm for an important class of kernels, which we
call Random Kernel Graphs. Random Kernel Graphs are very general and exhibit the flexibility
of the inhomogeneous random graph model including tunable expected degree sequences and
tunable assortativity. For Random Kernel Graphs, we exploit the idea of sampling from a wait-
ing-time distribution to design an algorithm for generating uniform n-node samples with com-
plexity ofO(n(logn)2). We demonstrate the utility of the model by showing how to generate
large sparse random graphs with a power-law degree distribution and adjustable assortativity.

2 RandomKernel Graphs
The BJR random graph model is extremely general, and we do not know of an algorithm which
can quickly and efficiently generate such graphs. Instead, we specify an important special case
of the model, the Random Kernel Graph G(n, κ) defined below, which is still very general and
includes many models such as the Erdős-Rényi G(n, p) [11], Chung-Lu G(w) [12], and Söder-
berg models [14].

Definition 1 (THE KERNEL κ). A non-negative, bounded, symmetric, measurable function κ:
[0, 1]2! R is a kernel if there exists a finite set D� [0, 1] such that κ is continuous at all points
(x, y) for which neither x nor y belong to D.

Definition 2 (RANDOM KERNEL GRAPH G(n, κ)). For each positive integer n we define a distri-
bution of graphs on vn = {i/n:i = 1, 2, . . ., n}. Given a kernel κ, we define the Random Kernel
Graph G(n, κ) to be the graph obtained on the vertices vn when edges (vi, vj) are chosen inde-
pendently with probability pij given by

pij≔
kðvi; vjÞ

n
:

As κ is bounded and we are interested in the asymptotics of generating large graphs, we always
assume that κ� n.

For example if κ� c is constant, then G(n, κ) is nothing more than the Erdős-Rényi random
graph model in which each edge appears independently with probability c/n.

Note that G(n, κ) defines a sequence of graph distributions, one distribution for each integer
n. This is convenient from several perspectives. Mathematically we can analyze the n!1
limit of the distributions; from a practical standpoint we can generate graphs at different scales
which all come from the same model.

3 An efficient generation algorithm
When random graphs are defined through independent random variables, as is the case in for

G(n, κ), one need only test n
2

� �
random Bernoulli variables to choose a graph on n vertices uni-

formly from the distribution. But when modeling real-world networks, which are usually large
and sparse, algorithms which takeO(n2) steps are prohibitively slow. To produce a sparse
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graph withm edges the ideal is to find algorithms that run in timeO(m). Batagelj and Brandes
found such an algorithm for producing Erdős-Rényi random graphs [18]. Instead of sampling
consecutive Bernoulli random variables, the algorithm samples from a waiting time distribu-
tion (the Geometric distribution) to determine the next edge to be added. This method was
extended to generate Chung-Lu random graphs in timeO(m+n) [19].

As in the methods discussed above, our design of an efficient algorithm for G(n, κ) begins
by drawing from waiting-time distributions instead of drawing n2 Bernoulli variables. The ran-
dom variable from our waiting distribution tells us exactly how many “non-edges” are skipped
before the next edge is added to the graph. Suppose that in generating a graph G = G(n, κ) we
have already determined that vertex vi is adjacent to vertex vj. We would like to determine the
next neighbor of vi in the ordering of the indices. (By symmetry it is sufficient to determine
only those neighbors of vi whose index is greater than i so we can assume that j> i.) We first
pick a random number r from the uniform distribution on (0,1], and then set d to the smallest
positive integer such that,

Yjþd
k¼jþ1

1� pik < r : ð1Þ

The next neighbor of vi is then vj+d so the edge (vi, vj+d) is added to the graph. If there is no
such d with j+d� n then vi has no more neighbors and we continue by searching for neighbors
of the next vertex vi+1.

The key to a fast algorithm for G(n, κ) is efficiently calculating the index d for each gener-
ated edge. To see how to approach this problem consider the following approximations,

Yjþd
k¼jþ1

1� pik ¼
Yjþd
k¼jþ1

1� kðvi; vkÞ
n

ð2Þ

� exp �
Xjþd
k¼jþ1

kðvi; vjÞ
n

 !
ð3Þ

� exp �
Z ðjþdÞ=n

j=n

kðvi; yÞ dy
� �

: ð4Þ

The product in Eq (2) has been reduced to calculating the exponential of a definite integral.
This formula can be computed efficiently, especially if an analytical form for the integral of κ
can be found.

Instead of using the approximation Eq (4) to compute the waiting times we take a different
approach and define a new random kernel model G0 based on this approximation. This new
model can be generated exactly. We prove in Appendix A that the models G and G0 are asymp-
totically equivalent.

Definition 3 (RANDOM KERNEL GRAPH G0(n, κ)). Let vn and κ be given as in Definition 2. The
random kernel graph G0(n, κ) is the graph obtained on the vertices vn when the edges (vi, vj)
are chosen independently with probability p0ij given by

p0ij≔1� exp �
Z vj

vj�1
kðvi; yÞ dy

 !
:

We set the value of v0 = 0 to allow computation of the integral but no vertex v0 is added to the
graph.
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For the model G0(n, κ) we now have for relation Eq (1) the following equations,Yjþd
k¼jþ1
ð1� p0ikÞ ¼

Yjþd
k¼jþ1

exp �
Z vk

vk�1

kðvi; yÞdy
0
@

1
A

¼ exp �
Xjþd
k¼jþ1

Z vk

vk�1

kðvi; yÞdy
0
@

1
A

¼ exp �
Z ðjþdÞ=n

j=n

kðvi; yÞdy
0
@

1
A:

Therefore, if r is sampled uniformly from (0,1], then we need to find the minimal d such thatZ ðjþdÞ=n

j=n

kðvi; yÞ dy > � ln r : ð5Þ

Using inequality Eq (5) we present an efficient method for generating the model G0(n, κ) in
Algorithm 1. To simplify the exposition we use the following notation,

Fðvi; vj; vkÞ≔
Z vk

vj

kðvi; yÞ dy : ð6Þ

Algorithm 1 Fast Generation of G0(n, κ)
Input: : n, F
Output: : G0(V, E)
1: V {vi = i/n:i = 1, 2, . . ., n}
2: E ;
3: (vi, vj) (1/n, 1/n)
4: while vi < 1 do
5: Sample r uniformly from (0,1]
6: r −lnr
7: If F(vi, vj, vn)� r then
8: ðvi; vjÞ  ðvi þ 1

n
; vi þ 1

n
Þ

9: else
10: Set d to smallest positive integer with F (vi, vj, vj+d/n) > r
11: E E [ (vi, vk)
12: (vi, vj) (vi, vk)
13: end if
14: end while

4 Algorithm scaling performance
If lines 6, 7, and 10 in Algorithm 1 can be calculated inO(1) time then the entire algorithm
runs in timeO(n). To see this, note that each time the while loop of the algorithm executes,
either an edge is added to the graph or the index of vi is increased by 1. Since the index of vi
never decreases, the if statement can only execute at most n times in total. Thus the while loop
executes at mostm+n times. For graphs with bounded κ, which are the focus of this manu-
script,m =O(n) and thus the while loop executesO(n) times. However, line 6 requires the
evaluation of a logarithm, line 7 requires the evaluation of a definite integral, and line 10
requires a root-finding algorithm. In general these operations are notO(1) running time; the
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speed of the integral and root-finding algorithms depend on κ. If however, F and its roots can
be calculated in timeO(1), then the entire algorithm runs in timeO(n).

If numerical integration or root-finding is required, the complexity will be slightly worse.
There are numerical integration algorithms which can calculate large classes of definite inte-
grals in orderO(logn) (the implied constant will depend on κ) with an error bound of n−k for
fixed k. Root finding is also often fairly inexpensive. For large classes of functions, a root can be
found in timeO(logn) (again the implied constant will depend on κ) with an error of at most
O(n−k). For example if κ is a polynomial, it can be integrated analytically and Newton’s method

can be used to find its roots inOð ffiffiffiffiffiffiffiffiffi
logn

p Þ time to a precision of n−k for any fixed k.
We tested the scaling of Algorithm 1 by generating Erdős-Rényi random graphs with the

parameter p = 10/n (κ� 10) at various scales for n� 108. While it is trivial to analytically solve
for the integrals and roots with constant κ, we used a numerical root solver to demonstrate that
even with root solving the algorithm works efficiently. Fig 1 shows the results of our timing
experiments for a Python implementation of Algorithm 1 using the NetworkX software pack-
age [20]. The data show that with numerical root finding the algorithm scales at a better (faster)
rate than the worst caseO(nlogn).

Finally we note that Algorithm 1 can be trivially parallelized since the computation of the
neighbors for each of the n vertices vi can be done independently.

5 Generating graphs with tunable assortativity
We now provide examples for random kernel graphs with tunable assortativity, or mixing coef-
ficients. This provides a way to generate graphs uniformly from a distribution with specified,
and analytically computable, asymptotic assortativity.

5.1 Assortativity
The assortativity coefficient of a graph G, denoted ρ(G), is defined in the following way. Pick
an edge (u, v) uniformly over all the edges in G. Define random variables Du, Dv to be the
degrees of u and v respectively. Note that Du and Dv by symmetry have the same distribution.
Then ρ(G) is given by

rðGÞ≔CovðDu;DvÞ
VarðDvÞ

: ð7Þ

The asymptotic assortativity of G(n, κ) can be computed directly using the kernel κ [15] (see
Appendix B). The formula, found in Eq (15), contains terms related to the number of copies of
small subgraphs in the graph. We can use this formula to design a kernel κ with a specific
asymptotic assortativity. In the following we give an example and compare the numerically
computed assortativity from Eq (7) with the asymptotic value from Eq (15).

5.2 Power-law graphs with assortativity
To demonstrate the flexibility of the Random Kernel Graph model generator we now show
how to produce graphs with a cutoff power law degree sequence and with tunable assortativity.
We choose a cutoff power-law degree sequence as representative of the power-law like degree
sequences which are ubiquitous in real networks [21]. For a similar reason we chose the Pear-
son correlation coefficient, or assortativity, as a second tunable parameter; the assortativity is
widely used and its value is known for most real networks of interest [22]. The cutoff is
designed to bound the maximum (expected) degree.
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To generate a graph with an expected degree sequence given by a function ψ we can use the
kernel κ(x, y) = cψ(x)ψ(y) with c = 1/

R
[0, 1]ψ(x)dx (see Appendix B). To produce graphs with a

cutoff power-law degree sequence we used the kernel

kðx; yÞ ¼ ðx þ :0001Þ�1=2ðy þ :0001Þ�1=2: ð8Þ

This produces graphs such that the number of vertices of degree k is proportional to k−3 up to
the cutoff which occurs at k = 100 (k = 100 is the maximum expected degree). Note that in gen-
eral, the kernel

nðx; yÞ ¼ x�1=py�1=p;

for p> 0 will produce graphs with power-law like degree sequences. To see this, recall that the

degree sequence will (in the asymptotic limit) follow the mixed Poisson distribution
R 1

0
lðxÞdx,

where lðxÞ ¼ R 1

0
nðx; yÞdy. For large fixed k, we can approximate the number of vertices of

degree at least k as follows. The measure of the set

mðfx : lðxÞ > kgÞ ¼ k�p:

Thus by concentration of measure, the probability a vertex will have degree at least k will also
scale as k−p. Indeed it is not hard to check that if dk is the fraction of vertices with degree k,
then

dk � ck�p�1;

for an appropriate constant c> 0 [16], Section 8.1].

Fig 1. The running times for generating Erdős-RényiG(n, p) random graphs κ� 10 using the method
in Algorithm 1. The blue circles show the average wall-clock run-time for graphs at a given n. The dashed
reference line t = 10−5 nlogn is provided to show that the average run-time performance is slightly better than
the worst case estimateO(nlogn).

doi:10.1371/journal.pone.0135177.g001
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The graphs produced by the kernel in Eq (8) will have expected assortativity ρ = 0; there are
no degree-degree correlations. To add degree-degree correlations, we modify the kernel to

k0ðx; yÞ ¼ ðx þ :0001Þ�1=2ðy þ :0001Þ�1=2 þ amcðx; yÞ; ð9Þ
wheremc(x, y) is defined as

mcðx; yÞ ¼

1 if x � c and y � c

c2

ð1� cÞ2 if x > c and y > c

� c
1� c

otherwise:

8>>>>><
>>>>>:

ð10Þ

Here, c is chosen in the interval (0,1] while a can be any nonnegative number such that κ0 is
nonnegative. Note that for any such choice of c and a the expected degree sequence of κ0 is the
same as that of κ since

8x; 8y;
Z 1

0

amcðx; yÞdx ¼ 0:

Thus the term amc(x, y) changes the structure of the graphs G(n, κ0) without modifying their
(expected) degree sequences. In particular, as κ is monotone decreasing, by modifying the
parameters a and c we can produce graphs with varying degree correlations.

For our experiments, we chose c = 0.001 and then maximized or minimized a to produce
maximal positive or negative assortativity. We used the value a = −909 to produce graphs with
negative assortativity and a = 30,119 to produce graphs with positive assortativity. For these
two kernels (defined by the positive and negative values of a), we directly calculated the
expected asymptotic assortativity coefficient using the formula given in Section B. In the posi-
tive assortativity case, we calculated the asymptotic assortativity coefficient to be ρ = 0.1876,
while in the negative assortativity case we calculated a value of ρ = −0.0056. The asymptotic
values were then compared to averages obtained by generating multiple graphs G0(n, κ0) at
varying scales and numerically calculating the associated assortativity coefficients. We have no
theoretical results on the rate convergence to the asymptotic value as a function of number of
vertices n. But the results in our experiment, shown in Fig 2, demonstrate that in this case the
convergence is fast and by n = 106 vertices has reached nearly the asymptotic value.

Despite its widespread use, the Pearson correlation coefficient is an imperfect graph statistic.
Litvak and van Hofstead have shown that graphs with power-law degree sequences can only
achieve non-negative assortativity in the asymptotic limit [23]. We found that even with a
power-law degree sequence with a cutoff, it was hard to adjust the assortativity coefficient much
below zero. Our methods however, are not necessarily exhaustive; there may indeed be graphs
with cutoff power-law degree sequences that also have strongly negative assortativity coefficients.

6 Discussion
There have been many approaches to modeling random graphs with given properties. For
example graphs with a fixed degree sequence have many applications both in pure and applied
mathematics. But the search for unbiased generators of these graphs has proved quite difficult,
and the general problem of efficiently generating graphs with a specified nonuniform degree
sequence is still open. Even when polynomial algorithms are known to exist they can be
impractical for large n (see [24] for a short survey). There are two main approaches to generat-
ing random graphs with a given degree sequence. The first approach, called the configuration
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method, was pioneered by Bender and Canfeld [25] and Bollobás [13]. Here, “stubs” on each of
the vertices are matched in pairs to form the edges of the graph. This basic idea was used to
define an algorithm to produce uniformly graphs with a given degree sequence in timeO(dm)
where d, the max degree in the graph, is restricted by d =O(m1/4−ε) [24, 26]. A second
approach is to use a double edge-swap operation to define a Markov chain on the space of
graphs with a given degree distribution [27]. Unfortunately, it is notoriously difficult to show
that these Markov chains have fast mixing. In practice various heuristics are applied to deter-
mine when to stop swapping edges [28].

Finally, we note that the model G(n, κ) will produce very few triangles. Asymptotically, the
number of subgraphs K3 = 0. For some applications, such as in social networks, real-world net-
works have many triangles. Models that can match the triangle density or even triangles corre-
lated with the graph degree are important [29]. It is possible to extend the G(n, κ) model and
algorithm to use kernels that will produce triangles and or other subgraphs of interest. Indeed
the more general BJR model has already been extended in this way [16]. Again one could spec-
ify a suitable subclass which would produce inhomogeneous random graphs with tunable clus-
tering. The generation algorithm would then involve evaluating certain two-dimensional
kernels (as well as the one dimensional case treated here). The detailed description and analysis
of such and algorithm is beyond the scope of this paper and we leave it for future studies.

AModel equivalence
Though the two models G(n, κ) and G0(n, κ) appear slightly different, we now show that they
are asymptotically equivalent under realistic assumptions. Recall that the power of the model G
(n, κ) comes from the fact the model can be related to the kernel κ. Specifically, many asymp-
totic properties can be computed directly using the kernel. The same statement holds for the
variant model G0(n, κ); asymptotic properties of the graphs can be computed from κ. Given
this, it is natural to expect that the two models, G(n, κ) and G0(n, κ), are in some sense equiva-
lent in the asymptotic limit, and we now prove this.

Asymptotic equivalence is defined in the following way [30]. Let G(n, pij) and H(n, qij) be
two random graph models defined on vn with edges chosen independently: vi * vj with

Fig 2. The average assortativity coefficient of graphsG0(n, κ0) generated from the kernel in Eq (8) for varying n. For each data point, shown by the
solid circles, an ensemble of 10 graphs were generated and the average assortativity coefficient was computed for the ensemble. (a) Positive assortativity,
c = 0.001, a = 30,119. (b) Negative assortativity, c = 0.001, a = −909. The horizontal line is the asymptotic calculation of the assortativity coefficient. The
values converge to approximately the asymptotic value by n = 106.

doi:10.1371/journal.pone.0135177.g002
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probability pij (qij, respectively). These two models are asymptotically equivalent if for every
sequence (An) of sets of graphs on defined on vn, we have

P½Gn 2 An� � P½Hn 2 An� ! 0 ;

for Gn and Hn sampled form G(n, pij) andH(n, qij) respectively.
To show that the models G(n, κ) and G0(n, κ) are, under reasonable assumptions, asymptot-

ically equivalent, we will make use of the following theorem.
Theorem 1 (Janson [30]) The models G(n, pij) and H(n, qij) are asymptotically equivalent if

• qij ¼ pij þOðp2ijÞ (the implied constant is uniform over n and choice of i and j)

•
P

i<jp
3
ij ¼ oð1Þ:

Janson further showed that if
R
[0, 1]×[0, 1]κ

2 dxdy<1, then
P

i<jp
3
ij ¼ oð1Þ holds for the

model G(n, κ). We will use this result together with Theorem 1 to show that G(n, κ) and G0(n,
κ) are asymptotically equivalent when κ is bounded away from zero and has bounded deriva-
tive qκ/qx.

Proposition 1. Let κ be be bounded away from 0. Suppose also that κ is differentiable at all
points (x, y) for x, y =2 D and that the derivative qκ/qx is bounded. Then the models G(n, κ) and
G0(n, κ) are asymptotically equivalent.

Proof. By symmetry, the derivatives of κ are bounded, so κ is also bounded. Thus by Janson’s
work, described above, we know that

P
i<jp

3
ij ¼ Oð1Þ. By Theorem 1 it is thus sufficient to

show that p0ij ¼ pij þOðp2ijÞ. Without loss of generality, let i< j. Define f(x) as

f ðxÞ≔�
Z x

vi

kðx; vjÞdx ¼
Z vi

x

kðx; vjÞdx:

Then applying Taylor’s Theorem to approximate f(vi−1/n) by f(vi),Z vi

vi�1=n
kðx; vjÞdx ¼

1

n
kðvi; vjÞ �

1

2n2

qk
qx
ðx0; vjÞ ;

for some x0 2 [vi−1/n, vi]. Since κ bounded away from zero and qκ/qx is bounded, there exists

a constant C, depending only on κ, such that j qkqx ðx0; vjÞ j� Ckðvi; vjÞ2 and thereforeZ vi

vi�1=n
kðx; vjÞdx �

1

n
kðvi; vjÞ þO

kðvi; vjÞ
n

� �2
 !

:

We have shown that Ii;j≔
R vi
vi�1=n kðx; vjÞdx satisfies

Ii;j ¼ pij þOðp2ijÞ:

Now, by definition,

p0ij ¼ 1� exp ð�Ii;jÞ;

which implies that

Ii;j � p0ij � Ii;j �
I2i;j
2
:
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Thus indeed,

p0ij ¼ pij þOðp2ijÞ:

This asymptotic equivalence condition for the two models G(n, κ) and G0(n, κ) is quite
strong and relies on the assumptions that there exists an ε with κ> ε and that κ and qκ/qx are
bounded.

B RandomKernel Graph Characteristics
Many properties of the graph G(n, κ) can be computed directly using the kernel κ. In particu-
lar, κ determines asymptotic properties of the graphs G(n, κ) as n!1 [15].

Degree sequences
Though the model G(n, κ) cannot generate graphs with fixed degree sequences it can generate
random graphs with a given expected degree as a generalization of the Chung-Lu model [12].
To see this, note that the degree dG(x) of a vertex x in G = G(n, κ) satisfies

lim
n!1

E½dGðxÞ� ¼
Z
½0;1�

kðx; yÞdy: ð11Þ

Thus if κ is a multiplicatively separable function, i.e. can be written as κ(x, y) = ψ(x)ψ(y) for
some ψ:[0, 1]! R

+, then the expected degree of a vertex x in G will be proportional to ψ(x),

lim
n!1

E½dGðxÞ� ¼ cðxÞ
Z
½0;1�

cðyÞdy:

The full degree distribution can be determined as follows. Let λ(x) =
R
[0, 1]κ(x, y)dy. Then in

the asymptotic limit, the degree distribution will converge in probability to the mixed Poisson
distribution

R
[0, 1]Po(λ(x))dx [15], Theorem 3.13].

Subgraph density
Since the expected degree of each vertex can be determined (asymptotically), it is not surprising
that the edge density can also be computed. Let e(G) denote the number of edges in G = G(n,
κ). Then

lim
n!1

E½eðGÞ�
n

¼ 1

2

Z
½0;1�2

kðx; yÞdx dy: ð12Þ

In fact, it is just as easy to determine asymptotically the number of other expected subgraphs
H. Here we give the expected number of paths and cycles in the graph; other subgraphs of
interest can be similarly determined (see [15] and [16]). Let Pk(G) and Ck(G) denote the num-
ber of paths and cycles of length k in the random kernel graph G = G(n, κ). Then

lim
n!1

E½PkðGÞ�
n

¼ 1

2

Z
½0;1�kþ1

kðx0; x1Þkðx1; x2Þ 	 	 	 ; kðxk�1; xkÞdx0 dx1 	 	 	 dxk ; ð13Þ

and,

lim
n!1

E½CkðGÞ�
n

¼ 1

2k

Z
½0;1�k

kðx1; x2Þ 	 	 	 ; kðxk�1; xkÞ; kðxk; x1Þdx1 dx2 	 	 	 dxk : ð14Þ
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Assortativity
A common measure of the assortativity of a graph is Pearson’s correlation coefficient, other-
wise known as assortativity. The correlation coefficient can be written in terms of the number
of copies of certain small subgraphs in the graph. For a fixed subgraph H, let n(H, G) be the
number of isomorphic copies ofH in G. Define

tðk;HÞ≔ lim
n!1

1

n
E½nðH;GÞ�:

In the asymptotic limit, the assortativity coefficient of G is given by

lim
n!1

rðGÞ ¼ tðP3ÞtðP1Þ � tðP2Þ2
3tðK1;3ÞtðP1Þ þ tðP1ÞtðP2Þ � tðP2Þ2

: ð15Þ

Note that τ depends on the kernel κ but we dropped this dependence from our notation to
improve readability. The graph K1,3 is the complete bipartite graph with parts of size 1 and 3,
that is a star with three leaves. This derivation of the asymptotic assortativity coefficient can be
found in [16]. (Note that in that derivation there is a τ(K3) term which we safely ignore since it
is zero for all the graphs we study.)

Acknowledgments
We would like to thank Terry Haut, Joel Miller, and Pieter Swart for helpful comments and
suggestions.

Author Contributions
Conceived and designed the experiments: AH NL. Performed the experiments: AH NL. Wrote
the paper: AH NL.

References
1. NewmanM. Networks: An Introduction. New York, NY, USA: Oxford University Press, Inc.; 2010.

2. Bollobás B. RandomGraphs. Cambridge University Press; 2001.

3. NewmanM. The Structure and Function of Complex Networks. SIAM Review. 2003; 45(2):167–256.
doi: 10.1137/S003614450342480

4. Aiello W, Chung F, Lu L. A Random Graph Model for Power Law Graphs. Experimental Mathematics.
2001; 10(1):53–66. doi: 10.1080/10586458.2001.10504428

5. Hay M, Miklau G, Jensen D, Towsley D, Li C. Resisting structural re-identification in anonymized social
networks. The VLDB Journal. 2010; 19(6):797–823. doi: 10.1007/s00778-010-0210-x

6. Vespignani A. Modelling dynamical processes in complex socio-technical systems. Nat Phys. 2012
Jan; 8(1):32–39. doi: 10.1038/nphys2160

7. Durrett R. Some features of the spread of epidemics and information on a random graph. PNAS. 2010;
107(10):4491–4498. Available from: http://www.pnas.org/content/107/10/4491.abstract. doi: 10.1073/
pnas.0914402107 PMID: 20167800

8. Chakrabarti D, Zhan Y, Faloutsos C. 43. In: R-MAT: A Recursive Model for Graph Mining. SIAM; 2004.
p. 442–446. Available from: http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43.

9. Kolda TG, Pinar A, Plantenga T, Seshadhri C. A Scalable Generative Graph Model with Community
Structure. SIAM Journal on Scientific Computing. 2014; 36(5):C424–C452. doi: 10.1137/130914218

10. Gilbert EN. Random graphs. The Annals of Mathematical Statistics. 1959;p. 1141–1144. doi: 10.1214/
aoms/1177706098

11. Erdős P, Rényi A. On the evolution of random graphs. Magyar Tud Akad Mat Kutató Int Közl. 1960;
5:17–61.

12. Chung F, Lu L. Connected components in random graphs with given expected degree sequences. Ann
Comb. 2002; 6(2):125–145. doi: 10.1007/PL00012580

Fast Generation of Sparse Random Kernel Graphs

PLOS ONE | DOI:10.1371/journal.pone.0135177 September 10, 2015 11 / 12

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1080/10586458.2001.10504428
http://dx.doi.org/10.1007/s00778-010-0210-x
http://dx.doi.org/10.1038/nphys2160
http://www.pnas.org/content/107/10/4491.abstract
http://dx.doi.org/10.1073/pnas.0914402107
http://dx.doi.org/10.1073/pnas.0914402107
http://www.ncbi.nlm.nih.gov/pubmed/20167800
http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43
http://dx.doi.org/10.1137/130914218
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1007/PL00012580


13. Bollobás B. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
European J Combin. 1980; 1(4):311–316. doi: 10.1016/S0195-6698(80)80030-8

14. Söderberg B. General formalism for inhomogeneous random graphs. Phys Rev E. 2002 Dec;
66:066121. doi: 10.1103/PhysRevE.66.066121

15. Bollobás B, Janson S, Riordan O. The phase transition in inhomogeneous random graphs. Random
Structures Algorithms. 2007; 31(1):3–122. doi: 10.1002/rsa.20168

16. Bollobás B, Janson S, Riordan O. Sparse random graphs with clustering. Random Structures Algo-
rithms. 2011; 38(3):269–323. doi: 10.1002/rsa.20322

17. Barrett C, Eubank S, Marathe M. Modeling and Simulation of Large Biological, Information and Socio-
Technical Systems: An Interaction Based Approach. In: Interactive Computation. Springer Berlin Hei-
delberg; 2006. p. 353–392. Available from: http://dx.doi.org/10.1007/3-540-34874-3_14.

18. Batagelj V, Brandes U. Efficient generation of large random networks. Phys Rev E. 2005 Mar;
71:036113. doi: 10.1103/PhysRevE.71.036113

19. Miller JC, Hagberg A. Efficient generation of networks with given expected degrees. In: Algorithms and
models for the web graph. vol. 6732 of Lecture Notes in Comput. Sci. Heidelberg: Springer; 2011. p.
115–126.

20. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using Net-
workX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). Pasadena, CA USA;
2008. p. 11–15. Http://networkx.github.io/.

21. Albert R, Barabási AL. Statistical mechanics of complex networks. Reviews of Modern Physics. 2002
Jan; 74(1):47–97. doi: 10.1103/RevModPhys.74.47

22. NewmanM. Assortative Mixing in Networks. Physical Review Letters. 2002; 89(20). doi: 10.1103/
PhysRevLett.89.208701

23. Litvak N, van der Hofstad R. Uncovering disassortativity in large scale-free networks. Phys Rev E.
2013 Feb; 87:022801. doi: 10.1103/PhysRevE.87.022801

24. Blitzstein J, Diaconis P. A Sequential Importance Sampling Algorithm for Generating RandomGraphs
with Prescribed Degrees. Internet Mathematics. 2011; 6(4):489–522. doi: 10.1080/15427951.2010.
557277

25. Bender EA, Canfield ER. The asymptotic number of labeled graphs with given degree sequences. Jour-
nal of Combinatorial Theory, Series A. 1978; 24(3):296–307. doi: 10.1016/0097-3165(78)90059-6

26. Bayati M, Kim JH, Saberi A. A sequential algorithm for generating random graphs. Algorithmica. 2010;
58(4):860–910. doi: 10.1007/s00453-009-9340-1

27. Kannan R, Tetali P, Vempala S. Simple Markov-chain algorithms for generating bipartite graphs and
tournaments. Random Struct Algorithms. 1999 Jul; 14(4):293–308. doi: 10.1002/(SICI)1098-2418
(199907)14:4%3C293::AID-RSA1%3E3.0.CO;2-G

28. Ray J, Pinar A, Seshadhri C. Are We There Yet? When to Stop a Markov chain while Generating Ran-
domGraphs. In: Bonato A, Janssen J, editors. Algorithms and Models for theWeb Graph. vol. 7323 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2012. p. 153–164. Available from:
http://dx.doi.org/10.1007/978-3-642-30541-2_12.

29. Seshadhri C, Kolda TG, Pinar A. Community structure and scale-free collections of Erdős-Rényi
graphs. Phys Rev E. 2012 May; 85:056109. doi: 10.1103/PhysRevE.85.056109

30. Janson S. Asymptotic equivalence and contiguity of some random graphs. Random Structures Algo-
rithms. 2010; 36(1):26–45. doi: 10.1002/rsa.20297

Fast Generation of Sparse Random Kernel Graphs

PLOS ONE | DOI:10.1371/journal.pone.0135177 September 10, 2015 12 / 12

http://dx.doi.org/10.1016/S0195-6698(80)80030-8
http://dx.doi.org/10.1103/PhysRevE.66.066121
http://dx.doi.org/10.1002/rsa.20168
http://dx.doi.org/10.1002/rsa.20322
http://dx.doi.org/10.1007/3-540-34874-3_14
http://dx.doi.org/10.1103/PhysRevE.71.036113
http://networkx.github.io/
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevE.87.022801
http://dx.doi.org/10.1080/15427951.2010.557277
http://dx.doi.org/10.1080/15427951.2010.557277
http://dx.doi.org/10.1016/0097-3165(78)90059-6
http://dx.doi.org/10.1007/s00453-009-9340-1
http://dx.doi.org/10.1002/(SICI)1098-2418(199907)14:4%3C293::AID-RSA1%3E3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1098-2418(199907)14:4%3C293::AID-RSA1%3E3.0.CO;2-G
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1103/PhysRevE.85.056109
http://dx.doi.org/10.1002/rsa.20297

