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Chapter 1

Temporal reachability in dynamic networks

Aric Hagberg∗, Nathan Lemons†, and Sidhant Misra‡

Theoretical Division,
Los Alamos National Laboratory,

Los Alamos, NM, 87545

We construct random temporal graph models using Markov chains that
preserve the random graph structure and have tunable dynamic prop-
erties. We analyze these models to determine the time it takes when
starting from a random vertex to reach a large fraction of the other ver-
tices by traversing temporal edges. The models we study are chosen for
their simplicity and ability to be generalized for more complex models
of threats in cybersecurity authentication systems.

1. Introduction

Dynamic network processes appear in many contexts such as spreading of
infectious disease,1 synchronization of electric power generators,2 learning
in the brain,3 and computer communication systems.4 The most commonly
studied case is when the network itself is not changing, or only changing
slowly, in time so that a static network topology is a good approximation.
Given the static network the primary challenge is to discover how the dy-
namics, such as an epidemic outbreak, proceeds over time. Many tools
and techniques have been developed to address such dynamical systems on
networks.5 A particularly important task is to relate structural properties
of the network to the dynamical system progress. The opposite problem,
inferring the structure of the network from a specified dynamical process,
is also being addressed.6,7

In some situations the dynamics on the network are slower than any dy-
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namics of the network topology, or the network process itself is best viewed
as a time series of edges. In this case, referred to as temporal networks, the
topological changes in the network become the primary focus. Some exam-
ples of temporal networks are mobile device routing,8 airline transportation
systems,9 and connectivity patterns in enterprise computer networks.10 A
recent survey on modeling and analysis for temporal networks can be found
in the review by Holme and Saramäki.11

Our focus is on models for temporal networks inspired by the time series
of events in centralized computer authentication systems such as those typ-
ically found in mid-size to large-size organizations.12 Centralized computer
authentication systems allow users convenient access to shared resources
and applications such as printers, email, and file servers. Users request cre-
dentials with passwords, temporary pass codes, or other security methods,
and then use those credentials to access networked services. The credentials
are typically cached on those resources so the users can have access for some
time period until the credentials are no longer valid and must be reautho-
rized. The credential caching is convenient for the users but it creates the
risk of misuse by other users who may steal the cached credentials and use
them to access parts of the network for which they are not authorized.13,14

The authentication system creates a stream of events of users authenti-
cating on computers that can be represented as a temporal network. The
events in which we are interested are the use of authentication credentials to
connect from one computer to another. Some user authentication activities
such as logins or starting a local processes only involve a single computer
and a different modeling approach is required.15 These events form time
series of connections between computers and thus temporal edges in the
graph of all computers in the network. The dynamical structure of con-
nections changes rapidly on the time scale of seconds to minutes, while
potential credential misuse in exploration of unauthorized parts of the net-
work could happen on a much longer time scale of days to weeks. Thus
the important dynamics are the changes in the network topology and the
problem of studying the structure of authentication connections is in the
category of temporal networks.

We construct and analyze two models of temporal networks with the
goal of computing how the times to reach a large fraction of the vertices
by traversing temporal edges changes with the structure and rate of change
of the networks. Modeling the security risk of centralized computer au-
thentication systems motivates this analysis. Although in this work we do
not address fitting specific data to models, we studied the data collected in
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the Los Alamos National Laboratory centralized authentication system as
a basis for dynamical properties and structure for our graph modeling.16,17

Some of the structural and dynamical properties of this data were analyzed
using a graph representation.18,19 One of the notable, and perhaps not sur-
prising, features of the data is that the distribution of the vertex degrees is
highly skewed both for the users and computers; a few users and computers
have many authentication and many users and computers have few authen-
tications. In the network of computer connections this translates to the
observation that a few computers are highly connected with authentication
activity and most computers are weakly connected.

A more surprising finding was that some statistical properties of the
authentication graphs are stable over time even though the topological dy-
namics are changing rapidly. For example, the distribution of the vertex
degrees is highly stable over aggregated time periods of a day even though
many of the edges are changing between days. On the first 16 regular
working days (Monday-Thursday are regular work days) of our example
data set16 the degree distribution is almost unchanging even though only
about 60% of the edges appear on consecutive days. A similar type of
dynamical network has been observed in the US air transportation route
graph where the overall statistics of the network change very little even
though the microdynamics are changing rapidly.9

To capture this type of dynamics we study and analyze two random
temporal network models each based on a well-known static random graph
model. The first is a temporal version of the Erdős-Rényi random graph
which has been studied in the literature as “edge Markovian dynamic
graphs”.20,21 The second is a generalization of that model to the Chung-
Lu expected degree random graph.22 In both cases temporal dynamics are
introduced through a Markov process that preserves the random structure
but changes the graph over time with an adjustable rate parameter.

The Markov condition is unlikely to be a good match for all authentica-
tion systems. The assumption ignores any burstiness that is typically seen
in computer networks and that might be found on shorter timescales than
the day-long time bins considered above. More detailed temporal models
would need to be considered to capture those dynamics.23 The Erdős-Rényi
graph structure is clearly not a good model for the authentication data
since it cannot produce graphs with skew degree distributions (the degree
distribution is Poisson for large sparse graphs). However, the simplicity
of the model allows us to more clearly present analysis techniques which
we then apply to the temporal Chung-Lu model. The Chung-Lu model is
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more appropriate for the authentication data since the degree distribution
is adjustable by parameters.

For these models we address the question of how long it would take for
an attacker using stolen authentication credentials to reach a large fraction
of the network. We assume that when a credential is stored on a compro-
mised computer it may be stolen and used for unauthorized access to any
computer where that credential was used at some current or future time.
Then from those computers other credentials can be stolen and used to
reach the entire connected component of the graph containing the compro-
mised computer. We study the impact of the structure and dynamics of
the network models on the time to traverse the network. First we compute
the mixing time of the induced Markov chain to show the time scales of the
graph correlations in relation to the model parameters. Then we evaluate
the time it would take to reach the entire network by traversing the tem-
poral edges. Our results are asymptotic; we prove bounds for the times as
the number of vertices approaches infinity.

2. Random temporal graphs

We begin with some basic definitions for temporal graphs. We consider
discrete time for ease of exposition. Most of the material can easily be
considered in a continuous time setting as well.

2.1. Basic Definitions

Let Kn denote the complete graph on n vertices.

Definition 1 (Random temporal graph). A random temporal graph on n
vertices is a probability distribution on the space {Gt}t≥0 where Gt ⊂ Kn

for each t.

Definition 2 (Edge Markovian). A random temporal graph {Gt} on n

vertices is called edge Markovian if there exist maps P,Q : E(Kn)→ [0, 1]

such that for all t ≥ 0, each edge e of Gt+1 is determined independently
with probability

P[e ∈ Gt+1] =

{
P (e) if e 6∈ Gt ,
1−Q(e) if e ∈ Gt .

(1)

Such models create a natural Markov chain, which we call the induced
Markov chain, defined on the space of graphs on n vertices where the transi-
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tion probability of moving fromGa toGb is given by P[Gt+1 = Gb|Gt = Ga].
Let P be the matrix of transition probabilities between graphs on n vertices.
A distribution π on all such graphs is called stationary if

π = πP.

Definition 3 (Mixing Time). Let M be a Markov chain defined on the
state space X. Let π be the stationary distribution of M . The distance
d(t) between the distribution of states in the chain after t steps and the
stationary distribution is given by

d(t) = max
x
||Xt − π||TV , (2)

where x ∈ X, and Xt denotes the distribution of states after the chain runs
for t steps with an initial start of X0 = x. The mixing time tmix(ε) is given
by

tmix(ε) = min{t : d(t) ≤ ε}. (3)

Definition 4 (Reachability). The vertices v1, v2, . . . , vk form a temporal
path in G = {Gt} if there exist times t1, t2, . . . , tk−1 such that

(1) for each i, ti ≤ ti+1, and
(2) for each i, (vi, vi+1) ∈ Gti .

If such a path exists, we say vk is reachable from v1 within time tk−1.

Note that more than one edge can be traversed at each time step so
this definition allows reaching the entire connected component at time t
containing a vertex visited at time t.

Given a random temporal graph Gt, a vertex u and δ ∈ [0, 1], what is the
expected time necessary before a linear fraction δn vertices are reachable
from u? To our knowledge this problem has not been studied before, and
we consider it in the following sections.

There has, however, been much research into the question of “flood-
ing times” for temporal graphs. Consider the following flow of information
through a temporal graph. At time 0, one vertex is “informed.” At each
subsequent time, all informed vertices inform each of their current neigh-
bors. The process stops when every vertex has been informed. The flooding
time is the minimum time time necessary for every vertex to be informed.
Note that the flooding time in a static graph is simply the graph diameter,
while the set of vertices reachable from a vertex v in a static graph is simply
the connected component containing v.
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2.2. Random Temporal Graph Models

Most existing results are for Erdős-Rényi random temporal graphs20,21

or, random geometric temporal graphs.24 Erdős-Rényi random temporal
graphs have appeared in the literature as “Edge-Markovian” random graphs.
For instance, the flooding time is computed for a definition in which the
starting graph G0 can have any arbitrary edge set.25 Further research con-
sidered an extension of the flooding time when vertices can only inform their
neighbors in the k subsequent time steps after being themselves informed26

and to graphs with arbitrary degree sequences.27

We now define a general version of this model based on the random
graph structure G(n, p), the Erdős-Rényi random graph on n vertices where
each edge occurs independently with probability p.

Definition 5 (Erdős-Rényi random temporal graph). An Erdős-Rényi ran-
dom temporal graph, G = G(n, p, α), is an edge-Markovian random graph
on n vertices defined by the parameters p = p(n) and α ∈ [0, 1] such that

• P (e) = αp,
• Q(e) = α(1− p), and
• G0 is distributed as G(n, p).

As we will see, at each step in time the Erdős-Rényi temporal graph is
distributed as an Erdős-Rényi random (static) graph G(n, p). However the
parameter α allows for the graphs Gt to be correlated in time. When α = 0

edges are not added or removed; the graphs Gt are all equal to G0. At the
other extreme, when α = 1, each time step is a complete resampling from
G(n, p).

Definition 6 (Chung-Lu random temporal graph). A Chung-Lu random
temporal graph G(n,W,α) on n vertices is defined by a distribution W

on the positive reals and a function α : R → (0, 1). Let W1,W2, . . . ,Wn

be i.i.d. sampled from the distribution W . Let pij = WiWj/(nE[W ]) and
αi = α(Wi). Then the temporal Chung-Lu model is defined as an edge-
Markovian model with

• P (vi, vj) =
√
αiαjpij ,

• Q(vi, vj) =
√
αiαj(1− pij), and

• G0 is distributed as CL(n, {Wi}), the static Chung-Lu model on n

vertices with each edge (vi, vj) present independently with probability
pij .
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We assume W is bounded to ensure the pij ’s are probabilities for large
enough n. Our results should also apply in the more general case when
asymptotically almost surely the pij ’s are probabilities. However we have
not worked through those details. Our definition of static Chung-Lu graphs
is slightly different from that in the original paper of Chung and Lu;22 we
normalize the probabilities by nE[W ] instead of

∑
Wi. For large n the

difference is small and this normalization is slightly more convenient in the
following technical results.

The Chung-Lu model produces graphs with expected degrees given by
the Wi values. The Erdős-Rényi model is a special case of the Chung-Lu
model which is realized when the distribution W has all probability mass
centered at one value.

3. Mixing times

The mixing time of the induced Markov chains for a random temporal graph
show how the model parameters affect the time scale of correlations. After
waiting for the length of the mixing time the graphs have little correla-
tion with the starting state. The mixing is rapid, O(log n), but it can be
extended to arbitrarily long times if the parameter α→ 0.

3.1. Erdős-Rényi random temporal graphs

First note that eachGt is distributed asG(n, p). The stationary distribution
of the natural induced Markov chain is also G(n, p).

Theorem 1. Let M be the Markov chain associated with the Erdős-Rényi
random temporal graph G(n, p, α). Suppose p ≤ 1/2. Then for every ε > 0

there exists a C such that the mixing time is

tmix(ε) ≤
log n− 1

2 log p+ C

− log(1− α)
. (4)

Moreover, this is asymptotically best possible as for every ε, 0 < ε < 1/2

there exists a D such that

tmix(ε) ≥
log n− 1

2 log p−D
− log(1− α)

. (5)

This theorem holds for p < /1/2, but we are mainly interested in the
sparse case, i.e. when p = c/n for some constant c.

We will use the following lemma.
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Lemma 1. Let Xt denote the distribution of the chain M after t steps
given that X0 is the complete graph. Then

d(t) = ||Xt − π||TV . (6)

Moreover we have that Xt = G(n, pt) where

pt = (1− α)t(1− p) + p.

Proof. The first statement is immediate from the definition of d(t). The
second statement follows from induction on t. Suppose that Xt−1 is dis-
tributed as G(n, pt−1). Then by definition, Xt is distributed as G(n, q)

where

q = [1− α(1− p)] pt−1 + (1− pt−1)αp ,

= (1− α) (pt−1 − p) + p ,

= (1− α)
(
[1− α]t−1

)
+ p ,

= (1− α)t(1− p) + p .

Proof of Theorem 1. To prove the upper bound set

t =
log n− 1

2 log p+ ω(1)

− log(1− α)
.

From Lemma 1 we have that pt = (1− α)t(1− p) + p and

d(t) ≤ ||G(n, pt)−G(n, p)||TV .

Janson (in Corollary 2.12),28 proved that if

n2 (p− pt)2

p
= o(1) ,

holds then ||G(n, pt)−G(n, p)||TV = o(1). By definition,

pt =

√
p

ω(n)
(1− p) + p ,

and thus

n2 (p− pt)2

p
= o(1),

as desired. This proves the upper bound.
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To prove the lower bound, let

t =
log n− 1

2 log p− ω(1)

− log(1− α)
.

Let G be distributed as G(n, p) and Gt as Xt, the distribution of states
(graphs) after t steps when starting from the complete graph. Consider the
random variables e(G) and e(Gt). By definition,

E[e(G)] =

(
n

2

)
p, (7)

while Lemma 1 implies that

E [e(Gt)] =

(
n

2

)[
(1− α)t(1− p) + p

]
≥ n2

5
(1− α)t + E [e(G)] . (8)

Thus while P[e(G)] ≤ p
(
n
2

)
= 1/2, using the Chernoff bounds and the

fact that p ≥ (1− α)t(1− p), we have that

P
[
e(Gt) ≤ p

(
n

2

)]
≤ P

[
e(Gt) ≤ E[e(Gt)]−

n

5
(1− α)t

]
, (9)

≤ exp

(
−

(
n2(1− α)t

)2
25n2 ((1− α)t(1− p) + p)

)
, (10)

≤ exp

(
−n

2(1− α)2t

50p

)
, (11)

≤ exp (−ω(1)) , (12)

≤ o(1) . (13)

Thus ||Xt − π||TV ≥ 1/2− o(1) as desired.

3.2. Chung-Lu random temporal graphs

We can use similar tools to analyze mixing times in Chung-Lu random
temporal graphs. To avoid confusion we point out that each choice of
weights W1,W2, . . . ,Wn defines a Markov chain on the space of n-vertex
graphs. In the model G(n,W,α) these weights are chosen randomly from
the common distributionW . Thus the model defines not only a distribution
on the graphs of order n, but also a distribution on the collection of Markov
chains which act on the space of n-vertex graphs. For ease of exposition,
we analyze the Markov chain obtained by conditioning on the values of the
Wi.
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Theorem 2. For every 0 < ε < 1 there exists a C = C(ε) and a D = D(ε)

such that if G = G(n,W,α) is a Chung-Lu temporal graph with vertex
weights W1,W2, . . . ,Wn, then the mixing time of the associated Markov
chain satisfies

tmix(ε) ≤
log n+ 1

2 log
〈
p−1
〉

+ C

− log(1−m)
, and (14)

tmix(ε) ≥
log n− 1

2 log 〈p〉 −D
− log(1− 〈α〉)

, (15)

where 〈
p−1
〉

=
1(
n
2

) ∑
i<j

p−1
ij , (16)

m = minαi, (17)

〈α〉 =

∑
i<j

√
αiαj(

n
2

) , and (18)

〈p〉 =

∑
i<j pij(
n
2

) . (19)

Lemma 2. Let Xt denote the distribution of the chain M after t steps
given that X0 is the complete graph. Then

d(t) = ||Xt − π||TV . (20)

Moreover Xt, is the random graph distribution where each edge (vi, vj) is
chosen independently with probability

pij,t := (1−√αiαj)t (1− pij) + pij .

Proof. The proof is analogous to the proof of Lemma 1.

Proof of Theorem 2. Set

t =
log n+ 1

2 log 〈p〉+ ω(1)

− log(1−m)
.

We again use the work of Janson28 which states that∑
i,j

(pij − pij,t)2/pij = o(1) ⇒ ||Xt − π||TV = o(1) .
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This can be easily verified,

∑
i<j

(pij − pij,t)2

pij
=
∑
i<j

(1−√αiαj)2t (1− pij)2

pij
, (21)

≤ (1−m)2t
∑
i<j

1

pij
, (22)

=

(
n

2

)
exp

(
2t log(1−m) + log

〈
p−1
〉)
. (23)

To prove the lower bound, let

t =
log n− 1

2 log 〈p〉 − ω(1)

log(1− 〈α〉)
.

Let G be distributed as G(n, pij), the Chung-Lu graph defined by the
weights W1, . . . ,Wn. Let Gt be according to the law Xt: the distribu-
tion of states (graphs) after t steps when starting from the complete graph.
Consider the random variables e(G) and e(Gt). By definition,

E[e(G)] =
∑
i<j

pij , (24)

while Lemma 1 implies that

E[e(Gt)] =
∑
i<j

(
(1−√αiαj)t(1− pij)

)
+ E[e(G)] . (25)

Thus using the convexity of f(x) = (1− x)t we have that

E[e(Gt)]− E[e(G)] =
∑
i<j

(
(1−√αiαj)t(1− pij)

)
, (26)

≥
(
n

2

)(
1−

∑
i<j(1− pij)

√
αiαj(

n
2

) )t
, (27)

≥
(
n

2

)
(1− 〈α〉)t . (28)

Define

γ ,
1

2

(
n

2

)
(1− 〈α〉)t . (29)
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Using the Chernoff large deviation inequality again we have that

P [e(G) ≥ E[e(G)] + γ] = P
[
e(G) ≥ E[e(G)] +

1

2

(
n

2

)
(1− 〈α〉)t

]
, (30)

≤ exp

(
−

1
4

(
n
2

)2
(1− 〈α〉)2t

2
(
n
2

)
〈p〉+ 1

3

(
n
2

)
(1− 〈α〉)t

)
, (31)

≤ exp

(
−
(
n
2

)
(1− 〈α〉)2t

12 〈p〉

)
, (32)

≤ exp (−ω(1)) , (33)

≤ o(1) . (34)

On the other hand, using the Chernoff large deviation inequality in the
other direction,

P [e(Gt) ≥ E[e(G)] + γ] = 1− P [e(Gt) ≤ E[e(G)] + γ] , (35)

≥ 1− P [e(Gt) ≤ E[e(Gt)]− γ] , (36)

≥ 1− o(1) . (37)

Thus ||Xt − π||TV ≥ 1− o(1) as desired.

4. Reachability

Reachability measures how long it would take to traverse a large fraction of
the graph starting from a given vertex. In the following we give asymptotic
results for the reachability time for the Erdős-Rényi and Chung-Lu random
temporal graph models. The reachability measure in Definition(4) allows
traversal to the entire connected component of the graph at a given time so
the analysis hinges on the sizes of the connected components in the graph.
In the static versions of the models we consider there are two regimes for
the connected component sizes which depend on the model parameters. In
the “subcritical case” the components are all small; the reachability in the
graph is controlled by connecting pathways between the components over
time. In the “supercritical case” the graph has a component of size O(n)

and the reachability time is fast, o(log n).

4.1. Erdős-Rényi random temporal graphs

Theorem 3 (Subcritical case; c < 1). Let p = c/n with c < 1 a constant.
Let G = TG(n, p, α) be an Erdős-Rényi random temporal graph and v, a
vertex of G. Then there exists a constant ρ depending only on c and α such
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that for any 0 < ε < 1, asymptotically almost surely the time it takes to
reach (1− ε)n vertices is ρ log n+ o(log n).

Theorem 4 (Supercritical case; c > 1). Let p = c/n with c > 1. Then
for any 0 < ε < 1, asymptotically almost surely the time it takes to reach
(1− ε)n vertices is o(log n).

An upper bound on the order of magnitude in Theorem 4 has already
appeared in the literature.25 We supply an independent proof and deter-
mine the exact value of ρ.

Define the random variables Xt, t ≥ 0 such that Xt is the number of
vertices reachable from v within time t. We remark that for all t,Xt ≥ Xt−1

and that X0 is the size of the component of G0 containing v. To bound
the Xt, we first consider a truncated version of Xt that will be useful for
technical reasons in the subsequent analysis. Fix a constant ε0 > 0 and
define

X̂t , min{ε0n,Xt}. (38)

To analyze the growth of X̂t, we construct a growth process B = B(N, p, α)

described as follows. The process starts with one individual and the number
of individuals at time t of this process is given by Zt. Suppose vi is one of
the Zt individuals at time t. At each time step t, every such individual vi
gives birth to Yt;i children where the Yt;i are i.i.d. from Bin(N,αp). Then
each of the new progeny have further progeny Zt;i;j sampled i.i.d. from
C = CG(N, p) - the distribution of component sizes in G(N, p). Formally
for each of the Yt;i progeny of vi sample Zt;i;j i.i.d. from C = CG(N, p)

where j = 1, 2, . . . Yt;i. Each such sampling is considered independently
over all realizations of G(N, p). The process starts with Z0 = 1. Note that
as individuals do not die we have

Zt =

Zt−1∑
i=1

1 +

Yt;i∑
j=1

(Zt;i;j)

 . (39)

The growth process B(N, p, α) described above is designed to mimic the
growth process associated with the reachability set as stated in the following
lemma.

Lemma 3. Fix ε0 > 0. Let X̂t be the truncated process defined in (38).
Let Zt(n) be the number population size at level t in B(n, p, α) and let
Zt(n(1 − ε0)) be the same quantity in B(n(1 − ε0), p, α). Define Ẑt(n(1 −



April 24, 2017 9:38 World Scientific Review Volume - 9in x 6in reachability page 14

14 A. Hagberg, N. Lemons, and S. Misra

ε0)) = min{ε0n,Zt(n(1− ε0))}. Then X̂t is stochastically bounded below by
Ẑt(n(1− ε0)) and stochastically bounded above by Zt(n).

We expect the process B to grow roughly at the rate of (1 + η) for some
positive η at each time step. We also expect that for large t, Zt should be
close to (1+η)t. However this does not hold for small t. Define the random
variable

W =

Yt;i∑
j=1

Zt;i;j , (40)

and let

η , E[W ] = α
np

1− np
, (41)

be its mean. Note that Equation (39) describes the evolution of the number
of individuals at depth t in a Galton-Watson branching process T with off-
spring distribution described by the random variable 1 + W . With this
equivalence, we can now use the well-studied theory of Galton-Watson
branching process to analyze the number of individuals Zt in the growth
process B. We first state the following results from branching process the-
ory.

Lemma 4. Let m , 1 + E[W ] = 1 + η be the mean number of offsprings
in the branching process T . Let YN denote the number of vertices at depth
N in T . Then there exists a random variable Y such that

lim
N→∞

m−NYN = Y with probability 1 . (42)

Additionally we have

P [YN = 0] = pext + oN (1), (43)

where pext is the extinction probability of the branching process T , and

P
[
0 < YN < yN

]
≤ P

[
0 < Y < (y/m)N

]
(1 + oN (1)), (44)

where oN (1) is a term that converges to 0 as N →∞.

Proof. The statement in (42) is a well-known result in branching process
theory.29 Both Equations (43) and (44) can be proved directly by using
KN = yN (using the notation in the reference) in Corollary 5 in Fleis-
chmann and Wachtel30 and observing that E[(1+W ) log(1+W )] <∞.
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Now we can define the quantity ρ in the statement of Theorem 3 as

ρ =
1

log(1 + η)
. (45)

In view of Lemma 3, we first prove the statements in Theorem 3 for the
growth process B before proceeding to prove the theorem itself.

Lemma 5. Let 0 < ε̄ < ε0. Let T = inf{t : Bt(n, p) ≥ ε̄n}. Then for any
0 < γ < ρ, we have asymptotically almost surely

(ρ− γ) log n ≤ T ≤ (ρ+ γ) log n. (46)

Proof. From the previously stated equivalence between the growth process
B and the branching process T , we have Zt = Yt. Note that E[Zt] = (1+η)t.
Using the Markov inequality, we have

P[Z(ρ−γ) logn > ε̄n] ≤ (1 + η)(ρ−γ) logn

ε̄n
=

(1 + η)−γ logn

ε̄
= o(1).

This shows that asymptotically almost surely T ≥ (ρ− γ) log n.
To obtain a bound from the other direction,

P
[
Z(ρ+γ) logn < ε̄n

]
= P

[
Y(ρ+γ) logn = 0

]
+ P

[
0 < Y(ρ+γ) logn < ε̄n

]
,

≤ pext + P
[
Y ∈

(
0,

ε̄n

(1 + η)(ρ+γ) logn

)]
(1 + o(1)) ,

= P
[
Y ∈

(
0, ε̄(1 + η)−γ logn

)]
(1 + o(1)) , (47)

= o(1) .

It remains to prove Lemma 3.

Proof of Lemma 3. To analyze the growth of Xt observe that when mov-
ing from time t to t + 1 the deletion of edges present in time t does not
have any effect on the reachable vertices. The only part that increases the
size of the reachable set is the addition of previously absent edges, which
happens with probability αp independently. The newly reachable vertices
are those vertices which are now adjacent to at least one of the previous Xt

vertices and the components of these newly adjacent vertices in Gt+1. The
number of newly adjacent vertices is distributed as B(n−Xt, αp) which is
stochastically dominated by B(n, αp). Further, the size of the components
of the new neighbors are distributed as the component size distribution
in G(n − Xt, p) and the total number of vertices in these components is
bounded above using the union bound by the sum of the component sizes.
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This proves that Xt is stochastically bounded above by the population at
time t in B(n, p). Since we have X̂t ≤ Xt, the stochastic dominance relation
also holds for X̂t.

To show the lower bound, we observe that since X̂t ≤ ε0n by definition
the component sizes of the newly adjacent vertices is stochastically dom-
inates the component sizes in G(n(1 − ε0), p). However, there might be
intersection between the newly added components which makes it unclear
whether X̂t stochastically dominates B̂. To get past this issue, we reveal
each of the newly added components sequentially. Let C1, . . . , CX̂t

be the
newly added components at time t for X̂t. Let D1, . . . , DZt

be the newly
added number of children at time t in B̂(n(1− ε0), t). We can assume as an
induction hypothesis that X̂t stochastically dominates B̂(n(1− ε0), t). We
need to prove that |

⋃X̂t

i=1 Ci| stochastically dominates |
⋃B̂(n(1−ε0),t)
i=1 Di|.

We can write

|
X̂t⋃
i=1

Ci| =
X̂t∑
i=1

|Ci \ (

i−1⋃
j=1

Cj)|.

Note that the quantity |Ci \ (
⋃i−1
j=1 Cj)| is distributed as component sizes

in G(n − X̂t, p) which stochastically dominates the component sizes in
B(n(1 − ε0), p), which is in turn identical to |Di|. The proof then follows
by induction.

We next state another result which says that its takes a small amount of
additional time to reach (almost) all vertices once we have reached a linear
fraction of them.

Lemma 6. Let 0 < ε, ε̄ < 1. Suppose that Xt0 ≥ ε̄n. Let Tε̄,1−ε be the ad-
ditional time it takes to reach at least (1−ε)n vertices. Then asymptotically
almost surely we have Tε̄,1−ε = o(log n).

Proof. Let Rt be the number of unreached vertices at time t0 + t, i.e. ,
Rt = n−Xt0+t. Let v be any vertex among the Rt unreached vertices. Then
the probability that v will be reached at time t0 + t+ 1 is at least 1− (1−
cα/n)ε̄n ≥ 1−0.5e−cαε̄ , δ̄ > 0. Hence the number of unreached vertices at
time t0 + t+1 is stochastically dominated by Bin(Rt, 1− δ̄). This allows us
to recursively define an overestimating process for the number of unreached
vertices at any time t0 + t. Let R̂0 = (1− ε̄)n, and let R̂t+1 = Bin(R̂t, δ̄).
From the previous discussion, for any t ≥ 0 by induction R̂t stochastically
dominates Rt. Also by induction, R̂t is distributed as Bin(1− ε̄n, (1− δ̄)t).
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Let f(n)→∞ be such that f(n) = o(log n). By Markov inequality

P
[
]Rf(n) > εn

]
≤ P

[
R̂f(n) > εn

]
≤ (1− ε̄)

ε
(1− δ̄)f(n) = o(1).

This shows that Tε̄,1−ε = o(log n).

We now have all the results required to complete the proof of Theorem 3.

Proof of Theorem 3. Fix ε0 > 0 and let 0 < ε̄ = ε0/2. Let Tε0/2 = inf{t :

Bt(n, p) ≥ ε̄n}. Let γ > 0 be arbitrary. From Lemma 3 we have that Xt

is stochastically bounded above by Zt(n). Combined with Lemma 5 we
conclude that asymptotically almost surely Tε0/2 ≥ (ρ− γ) log n.

Let η(ε0) ≤ η be the quantity corresponding to η in G(n(1 − ε0), αp).
Note that limε0→0 η(ε0) = η. Let

ρ ≤ ρ(ε0) ,
1

log(1 + η(ε0))
. (48)

Again from Lemma 3 we have that Xt is stochastically bounded below by
Zt(n(1− ε0)). Combining with Lemma 5 we conclude that asymptotically
almost surely Tε0/2 ≤ (ρ(ε0) + γ) log n. Restating, asymptotically almost
surely, T satisfies

(ρ− γ) log n ≤ Tε0/2 ≤ (ρ(ε0) + γ) log n. (49)

Let T1−ε be the time it takes to reach at least (1 − ε)n vertices. Then
T1−ε = Tε0/2 + Tε0/2,1−ε. Then combining (49) and Lemma 6 we have that

(ρ− γ) log n+ o(log n) ≤ T1−ε ≤ (ρ(ε0) + γ) log n+ o(log n). (50)

Notice that (50) holds for all γ > 0 and all ε0 > 0. So letting both γ

and ε0 tend to zero and using the fact that limε0→0 ρ(ε0) = ρ we have that
T1−ε = ρ log n+ o(log n).

We devote the rest of this section to the proof of Theorem 4 in the
supercritical case. First we state a well-known fact regarding the giant
component in Erdős-Rényi random graphs.

Lemma 7. Let G(n, p) be an Erdős-Rényi random graph with p = c/n

and c > 1. Then there exist constants δ1 > 0 and δ2 > 0 depending on
c such that, there is a connected component of size at least δ1n in G with
probability at least 1− e−δ2n.
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Proof of Theorem 4. Let f(n) be such that f(n)→∞ and f(n) = o(log n).
The probability that G0, . . . , Gf(n) all have a connected component of size
at least δ1n is greater than 1− f(n)e−δ2n = 1− o(1). For 0 ≤ t ≤ f(n), the
probability that in Gt the vertex v is not connected to the giant component
is less than (1 − αc/n)δ1n ≤ e−αcδ1 . Thus, the probability that the size of
the reachable set at time t = f(n) is smaller than δ2n is bounded above by
the probability that the vertex v does not belong to the giant component in
any of G1, . . . Gf(n), which in turn is bounded above by e−cαδ1f(n) = o(1).

Additionally, by Lemma 6, the time it takes to reach 1 − ε̄n vertices
starting from δ1n vertices is o(log n). Together this completes the proof.

4.2. Chung-Lu random temporal graphs

Theorem 5 (Subcritical case). Let G = G(n,W,α) be a Chung-Lu random
temporal graph with E[W 2] < E[W ]. Let v be a vertex of G. Then there
exists a constant ρ such that for each ε > 0, asymptotically almost surely

T1−ε ≤ ρ log n+ o(log n),

where T1−ε is the time required to reach (1− ε)n vertices from v and

ρ =

1 +
E
[
α(W )W 2

]
E[W ]

+
E
[√

α(W )W 2
]2

E[W ]2(1− E[W 2]/E[W ])


−1

.

We conjecture that, just as in the Erdős-Rényi case, the value of ρ is
exact. However we do not prove the lower bound here as the technical
details are more complex.

Theorem 6 (Supercritical case). Let G = G(n,W,α) be a Chung-Lu ran-
dom temporal graph with E[W 2] > E[W ]. Suppose that the support of W
and α(W ) do not contain 0. Let v be a vertex of G. Then asymptotically
almost surely

T1−ε = o(log n),

where T1−ε is the time required to reach (1− ε)n vertices from v.

The proofs of the two theorems follow the same general outlines of the
proofs in the Erdős-Rényi case. Many of the steps are even exactly the
same. Thus we often refer to the Erdős-Rényi case and leave out those
details which are same. Instead we devote our attention to outlining and
explaining the differences in the two sets of proofs.
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It is well known that when E[W 2] < E[W ], asymptotically almost surely,
the Chung-Lu random graph CL(n,W ) has no giant component while when
E[W 2] > E[W ] there is a unique component of size linear in n.22 When
E[W 2] < E[W ] the graph is called subcritical. Janson and Riordan have
shown31 that in this regime the average component has size is

E[|C(v)|] = 1 +
E[W ]

1− E [W 2] /E[W ]
, (51)

where C(v) denotes the component containing the vertex v. The above
result is obtained by averaging over the vertices uniformly. We will need a
related result in which the initial vertex is chosen with probability propor-
tional to its weight.

We now proceed in a similar manner as in the proof of Theorem 3.
Define the growth process B = B(n,W,α) as follows. The process starts
with one individual; the number of individuals at time t in of the process
is given by Zt. The individuals in the process are distinguished by their
types: vi has type Wi. Each time step t consists of two parts, denoted (a)
and (b).

In part (a) of time step t, every individual vi in the process gives birth to
Yt;i =

∑n
j=1Xt;i,j children where the Xt;i,j are Bernoulli random variables

chosen independently with probability √αiαjpij . Let µW be the probability
measure of the distributionW . Then we can write

∫
dµW (x) = 1. Note that

the collection of children at time t have types which are distributed accord-
ing to law αW defined by the probability measure xα(x)dµW (x)/E[αW ]

since a child of typeWi is chosen with probability proportional toWiα(Wi).
In part (b) of a time step each of the Yt;i children at time t have further

progeny. We define, for each type Wj , C = CG(n,W ;Wj), the distribution
of the random variable |C(v)|−1 defined over all realizations of the random
graph CL(n,W ) in which v is given the weight Wj .

Now in part (b) of the process a child vj of type Wj has Zt;i;j further
progeny sampled independently from C = CG(n,W ;Wj). Note that types
of these Zt;i;j further progeny are selected randomly with probabilities pro-
portional to value of their type Wk. In other words, the types of the Zt;i;j
individuals are distributed according to the law W defined by the proba-
bility measure xdµW (x)/E[W ]. Importantly, as vj was born in part (a),
its type is distributed according to the law αW defined by the probability
measure x

√
α(x)dµW (x)/E[αW ]. This is because by the definition of part

(a), the type Wj is selected with probability proportional to
√
α(Wj)Wj .
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As before we can inductively define the Zt,

Zt =

Zt−1∑
i=1

1 +

Yt;i∑
j=1

Zt;i;j

 . (52)

In the sum above we assume, for ease of exposition, that the indices cor-
respond to the types of the respective individuals in the process. We have
described the number of Zt of individuals at each step in the process. Let
the distribution of their types at time t be Dt.

Lemma 8. Let v be a vertex chosen at uniform in the random temporal
graph G = G(n,W,α). For t ≥ 0, define Xt to be the number of vertices
reachable from v within time t. Let Zt be the population size of the process
B(n,W,α). Then Xt is stochastically bounded from above by Zt.

The proof is essentially the same as the first part of the proof of Lemma 3
and is left as an exercise for the interested reader.

The proof of Theorem 5 is similar to the proof of the upper bound for
Theorem 3. In particular, the process B in transformed into a Galton-
Watson branching process. Equation (52) describes the evolution of the
number of individuals in a multi-type branching process at depth t with
offspring distributed as Dt and the number of offspring described by the
random variable Qt + 1 where

Qt =

Yt;i∑
j=1

Zt;i;j . (53)

Let η(t) be the expected value of Qt. A technical result32 states that if mt

is the number of individuals in such a multi-type branching process at time
t then mt/

∏
t(1 + η(t)) will converge to a random variable U which is zero

with probability zero. This is because the branching cannot die out.
To determine the rate of growth of mt, it is convenient to split it into

two parts.

Lemma 9. Let At and Bt be the expected number of individuals whose
types are distributed according to the laws αW and W, respectively. Then

mt − 1 = At +Bt . (54)

Furthermore, there exist constants η and λ such that

At = (1 + η)t , and (55)

Bt = λAt . (56)
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Lemma 10. Let 0 < ε̄, ε < 1. Suppose that Xt0 ≥ ε̄n. Let Tε̄,1−ε be the ad-
ditional time it takes to reach at least (1−ε)n vertices. Then asymptotically
almost surely we have Tε̄,1−ε = o(log n).

Proof of Theorem 5. By Lemma 8 we know that the graph reachability
process Xt is stochastically dominated by Zt. We also have that Zt in
expectation grows exponentially.

We can use a large deviation inequality as in Inequality (47) to show
that the time for the process B to reach at least εn vertices is asymptotically
almost surely no more than ρ+ γ where

ρ =
1

1 + η
, (57)

and 0 < γ < ρ.
As γ can be chosen arbitrarily small and as the number of discovered

individuals in B at time t stochastically dominates Xt we have in the limit
that asymptotically almost surely Tε ≤ ρ log n.

Finally Lemma 10 states that once ε̄n vertices are reachable from v,
the set of reachable vertices starts to grow very quickly. At this point
only o(log n) more time steps are necessary for all (1 − ε)n vertices to be
reachable from v.

Proof of Lemma 10. Let R be the set of vertices reachable from v in time t0
so |R| ≥ ε̄n. Let U be the rest of the vertices. Since α ≥ 0 andW is defined
on the positive reals, there exist mW , mα, and δ such that asymptotically
almost surely the set Ū = {vi ∈ U : Wi ≥ mW and αi ≥ mα} satisfies
|U\Ū | ≤ εn/2. Indeed we can choose mα small enough that there exist a δ
such that the set R̄ = {vi ∈ R : αi ≥ mα} satisfies

∑
vi∈R̄

Wi ≥ δn . (58)

Let Ūt be the number of unreached vertices of Ū at time t0 + t. Let vi
be any vertex in Ut. Then the probability that vi will be reached at time
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t0 + t+ 1 is at least

1−
∏
vj∈R̄

(1−√αiαjpij) ≥ 1− exp

∑
vj∈R̄

−√αiαjpij

 , (59)

≥ 1− exp

−√αiWi

nE[W ]

∑
vj∈R̄

√
αjWj

 , (60)

≥ 1− exp

(
−
√
mαmW

nE[W ]

√
mαδn

)
. (61)

Letting δ̄ , 1 − exp (−mαmW δ/E[W ]) we have that Ūt is stochastically
dominated by Ût distributed as Bin(n(1 − ε/2), (1 − δ)t). Let f(n) → ∞
with f(n) = o(log n). By the Markov inequality,

P[Uf(n) > εn] ≤ P[Ūf(n) > εn/2] ,

≤ P[Ûf(n) > εn/2] ,

≤ (1− ε̄)
ε/2

(1− δ̄)f(n) = o(1) .

This shows that Tε̄,1−ε = o(log n).

Lemma 11. Let v be an individual in the process B(n,W,α) discovered
(born) at time t with weight (i.e. type) distributed according to the probabil-
ity measure ν. Let Yτ ;v denote the number of children of v in the first part
of time step τ for τ > t. Then

E[Yt+1;v] =

∫ √
α(x)α(y)xy

E[W ]
dµW (x)dν(y). (62)

If u was discovered in part (a) of time step t and is distributed according to
ν1, then in part (b) of that time step u has Zt,u further progeny with

E[Zt,v] =

∫
x dν1(x)

1− E[W 2]/E[W ]
, (63)

many further progeny.

As the new progeny in part (b) of the process correspond to vertices in
a sampled component, the second part of the lemma is thus equivalent to
claiming that the sampled component containing v has size in expectation

1 +

∫
x dν(x)

1− E[W 2]/E[W ]
.



April 24, 2017 9:38 World Scientific Review Volume - 9in x 6in reachability page 23

Temporal reachability in dynamic networks 23

Proof. The first part of the lemma is follows from the fact that a new
neighbor vj in part (a) of the process are discovered with probability

√
αiαjWiWj/nE[W ] ,

when v has type Wi.
The second part of the lemma follows from results on the average com-

ponent sizes in inhomogeneous random graphs31.

Proof of Lemma 9. From Lemma 11 there exist constants γ1, γ2, and γ3

such that

At = (γ1 + 1)At−1 + γ2Bt−1, (64)

Bt = γ3(At −At−1) +Bt−1. (65)

Using the fact that B1 = γ3A1, and solving we have that η = γ1 +γ2γ3.

The values of the constants γ1, γ2, and γ3 can be directly computed
using Lemma 11. The are as follows:

γ1 =

∫
xy
√
α(x)α(y)

E[W ]

x
√
α(x)dµW (x)dµW (y)

E[
√
α(W )W ]

=
E[α(W )W 2]

E[W ]
, (66)

γ2 =

∫
xy
√
α(x)α(y)

E[W ]

xdµW (x)dµW (y)

E[W ]
=

E[
√
α(W )W 2]E[

√
α(W )W ]

E[W ]2
,

(67)

γ3 =

∫
x
√
α(x)xdµW (x)/E[

√
α(W )W ]

1− E[W 2]/E[W ]
=

E[
√
α(W )W 2]

E[
√
α(W )W ] (1− E[W 2]/E[W ])

.

(68)

This concludes the proof of Theorem 5.
To prove Theorem 6 we will use the following well-known result.

Lemma 12. Let G = CL(n,W ) be a Chung-Lu random graph with
E[W 2] ≥ E[W ]. Then there exist constants δ1 > 0 and δ2 > 0, depend-
ing only on W , such that there is a connected component in G with vertex
weights that sum to at least δ1n with probability at least 1− exp(−δ2n).

Proof of Theorem 6. As the supports of W and α(W ) do not contain 0,
there exist a nonzero mW and mα such that each vertex in the graph
has weight at least mW and each αi ≥ mα. By Lemma 12, there exist
nonzero δ1, δ2 such that with probability at least 1 − exp(−δ2n), there is
a connected component, C1, in Gt such that

∑
vi∈C1

Wi ≥ δ1n. Let v be
a vertex. Then the conditioning on the existence of a giant component in
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Gt, the probability v is not connected to the giant component in step t is
at most (1−mαmW δ2)/E[W ]) which is a constant independent of n.

The rest of the proof is the same as in Theorem 4.
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