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Resonance tongues and patterns in periodically forced reaction-diffusion systems
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Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhab@ifiskgaction in
response to a spatially homogeneous time-periodic perturbation with light. The réminogse$ in the forcing
frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis
of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced
BZ reaction shows both spatially uniform oscillations and rotating spiral waves, while the forced system shows
patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and
frequency of the perturbation, and also on whether the system responds to the forcing near the uniform
oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo
reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system.
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[. INTRODUCTION a resonance structure for spatially extended systems has not
) o ~ been reported. Moreover, it is not even clear to what extent
An oscillator forced by a periodic external perturbationthe familiar concept of resonance applies to spatially ex-
entrains to the forcing for certain values of the perturbationended systems.
frequency and amplitude. This behavior is observed in a To investigate a phase diagram showing multiple reso-
wide range of biological, chemical, and physical systems, fohances in spatially extended systems, we applied periodic
example, in circadian rhythms such as the sleep-wake cyclperturbations to a light sensitive form of the Belousov-
forced by the suril], in the tips of chemical spiral waves Zhabotinsky (BZ) chemical reaction-diffusion system and
forced with light[2—6], and in arrays of Josephson’s junc- measured the temporal response and pattern formation. In the
tions [7]. course of this investigation a different mode of response has
The entrainment to the forcing can take place even wheheen identified. Patterns may fail to lock to the forcing fre-
the oscillator is detuned from an exact resonafgel(. In  quency but still respond by showing ampeaked distribu-
this case, a periodic force with a frequenigyshifts the os-  tion of the oscillation-phase as in resonant patterns. We refer
cillator from its natural frequency, to a new frequency,, !0 this response mode as “near resonant.” _
such thatf,/f, is a rational numbem:n. When the forcing In addition to the nonuniform distribution of the oscilla-

amplitude is too weak this frequency adjustment or Iockingtiﬁn phase, [jef,onﬁgi andfnﬁar-rﬁsongnthpatternsl canhalso be
does not occur; the rati/f, is irrational and the oscilla- cnaracterized by thenapeof the phase in the complex phase

tions are quasiperiodic. In dissipative systems frequenc lane. The phase of unforced spirals has a circular shape in

S O ) . he complex phase plane but forcing breaks the circular sym-
locking is the major signature of resonant response. Near%etry. Ar’i higph enoEgh forcing this(,g is visible as ra-fold y

conservative systems show in addition a large increase in thseymmetry in the phase plane. Examplesiofl patterns ob-
amplitude of oscillations. served in the BZ system, whera:1=f;/f, and m=2,3,4

i The reglpl)onse of aftwo-dlrr:;.ensmn.al arlray ‘?lfl cpupl]sdldnpnére shown in Fig. 1. Unlike the single oscillator case, a spa-
Inear oscillators or of a two-dimensional osclllating field IS ;4 extended system can exhibit phase waves and other

much less well understood. For a periodically forced single,,asq patterns. In Fig. 1 each pattern is shown in two repre-
oscillator, the structurg in the para_meter plane .of the forcin entations: in the real spasey plane, and in the complex
frequencyf; and amplitudel contains many universal fea- phase plane

In this paper we construct an experimental phase diagram
the forcing frequency and amplitude parameter plane of

pattern types that lead to the two responses. The experimen-
tal setup and determination of resonance tongues are de-
"ribed in Secs. Il and Ill, respectively. The qualitatively
different patterns observed in the experiments are presented
in Sec. IV. A forced reaction-diffusion model, modified
*Electronic address: aric@lanl.gov FitzHugh-Nagumo equations, is introduced in Sec. V, which
"Electronic address: ehud@bgumail.bgu.ac.il is followed by a discussion of the model and the insight it

periodic forcing [23], and global feedback24-2§ have
been studied in the past, but a whole phase diagram showi
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FIG. 1. (Color onling Patterns in the periodically forced BZ reactiga)—(d) show a 11.5 11.5 mn? size region of patterns formed at
different forcing frequencies and amplitudes. The data are processed to show the pattern only near the subharmonic response frequency.
Patternga) and(c) are frequency locke@tesonant Patterngb) and(d) are near resonant but not frequency locked. The fraiegh) show
the same data represented in the complex phase plane, s§@ Refhe colors in the phase plane vary with the arj@le27] and are the
key to the pattern images above. See the text for deta)land(e) 2:1 two phase standing-wave patte(in), and(f) 3:1 three phase rotating
spiral, (¢) and(g) 3:1 three phase standing-wave pattéh,and (h) 4:1 four phase rotating spiral. Chemical conditions are given in Ref.

[27).

provides into the mechanisms of pattern formation in theresets the system so that the entire membrane is oscillating
experimental system. A general discussion and summary ofith the same frequency and phase. The frequency of this

the results are given in Sec. VI. spatially uniform oscillation, determined by the chemical ki-
netics, was found in our previous work to be essentially in-
Il. BELOUSOV-ZHABOTINSKY CHEMICAL SYSTEM dependent of the chemical concentrations used in our study,

fp=0.020 Hz [12]. The uniform oscillations eventually

The oscillatory chemical reaction occurs in a thin, porous-evolve to rotating spiral waves which fill the system. How-
glass membrang).4 mm thick, 25 mm in diametgrwhich  ever, the frequency of the spiral waves does depend on the
is in contact on each side with continuously refreshed resefshemical conditions. The ramifications of this dependence
voirs of reagents for the ruthenium-catalyzed BZ reactionwill be discussed in the following section.
[27,28. Each reservoir is well stirred and the reagents dif-
fuse from them into the membrane where they react. The
chemical concentrations in the reservoirs are given in Refs. lll. MULTIPLE RESONANCE TONGUES

[27,29. Visualization of the patterns is achieved using a low The chemical reaction is forced by illuminating it with

intensity tungsten lamp, which measures the optical densitgpatia"y homogeneous light that is periodically blocked
of the concentration patterns in the membrane without affect-

ing the chemical reactions. .

For the chemical concentrations used in the present ex#; (b) g -
periments the unforced system exhibits rotating spiral pat-’
terns. The patterns are sustained indefinitely in time becaus ’
the reaction products leave the membrane by diffusion into
the reservoirs, and reservoir concentrations are maintaine
by continuous feeds. We used two different sets of chemica
conditions[27,29, one creating spirals with a higher fre-

A N

quency (f;=0.072 H2 and one creating spirals of a lower
4

frequency(fs=0.020 Ha. Examples of the unforced spiral
waves for both sets of chemical conditions are shown in Fig.

2 FIG. 2. Unforced spiral patterns for the two sets of chemical

In addition to the spiral frequency, the BZ system hascongitions used for the experiments preseni@il. Spiral waves
another natural frequency: the unforced spatially homogeyith a shorter period[BrMA]=0.220 M, [BrO,;]=0.230 M [27].
neous oscillation frequency. Since perturbations always leagh) Spiral waves with a longer perioBrMA]=0.300 M, [BrO;]
ultimately to the formation of spiral waves in the membrane,=0.136 M [29]. The images show a*@9 mn? region of the pat-
we determined the homogeneous oscillation frequefgdyy  tern. Dark regions correspond to high concentrations oflIRu
the following method. The membrane was exposed to a sparaken from Ref[12]. All data reported in this paper are taken under
tially uniform high-intensity pulse of light for 30 s, which the conditions for the spirals on the left, except for Fig)4
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FIG. 3. Averaged power spectrum for a 2:1 resonant labyrin-
thine pattern. The response frequency has been normalized to th
forcing frequencyfs. The peak at 0.5 is the subharmonic response to
the forcing. The large peak at the forcing frequeftyf;) is due to
our imaging method, which captures part of the forcing light output.
In this paper we only consider responses subharmonic to the forcing
frequency(f/f;<1).

1000

[12,13,2]; the durations of the illuminated and blocked por- I
tions of each cycle are equal, i.e., the intensity modulation is( i) i
a square wave. To investigate the temporal response of th
patterns to the forcing we varied the intensltyand fre-
guency of the periodic light forcinfy. The light intensityl is 200
the control parameter for the forcing amplitude. We exam-
ined the temporal response to determine which, if any,
tongue the pattern belonged to, and examined the existenct
shape, and ordering of the resonance tongses Sec. I\

A. Determining temporal resonance

o bk %

The experimental data were collected as a time sequenc 1 3
of pattern snapshots. The natural oscillation period of the
reaction for the conditions used was about 50 s. Typically,
images were recorded every 2 s for 1 h and a central 2491e
X240 pixel (235 23 mnf) region of.the pa.ttern was a”"?" Chemical conditions are those used in Fig)227]. (b) The largest
lyzed. The Fourier transform of the time series for each pixe|, ., tongues observed for the chemical conditions used in Fig. 2
was calcu_lated to obtain an average power spectrum for thﬁg]. The homogeneous frequency in both casefy#s0.020 Hz,
pattern. Figure 3 shows a typical averaged power Spectrufyije the spiral frequency i) 0.072 Hz,(b) 0.020 Hz. Each sym-
for a resonant pattern when the forcing frequerigyvas o type represents a different: n response. The patterigoints
twice the uniform oscillation frequencp. The largest sub-  within the solid curves respond subharmonically with the forcing
harmonic frequency peak appears atf¢/2, as indicated by  frequency. The bottom plot is taken from R23)].
the vertical line.

f/f
f o

FIG. 4. (Color onling (a) The largesim: n tongues observed in
frequency-intensity plane of the spatially extended BZ system.

nant while others are near resonant, i.e., they are quasiperi-
odic patterns with arm-peaked phase distribution. In the
white space in Fig. 4 there exist either otin@m resonances,
Using the method described in the preceding section, wer quasiperiodic patterns with uniform phase histograms.
found tongues in the forcing parameter space where the pat- We varied the forcing frequency and intensity in the ex-
tern responds at or neam:n resonances. We obtained a periments and explored the temporal resonant response as we
phase diagram for each of the two chemical conditionanoved through the parameter space, and the results are
[27,29, shown in Figs. @) and 4b). If the peak of the shown in Fig. 4. Each symbol type represents a diffenemt
strongest mode subharmonic to the forcing was within £3 %resonance. The curves in Fig. 4 are drawn to guide the eye to
of the forcing frequency, we considered the pattern to behe tongues in thd;-1 plane with differentm:n responses.
responding to the forcing, and it is included within Bann  Only the largest resonance tongues are plotted. In addition to
resonance region in Fig. 4. This criterion is consistent withthe m: 1 tongues(and the 4:3 and 3:2 tongueshown, we
the observation ofm-peaked distributions of the oscillation observed several higher-order. n states(e.g., 5:7, 5:1, 6:1,
phase. Some of the patterns meeting this criterion are resd-0:1), which spanned control parameter ranges too narrow to

B. Tongues
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be maintained. In all cases the differentn tongues were (a) ' ' (d)
ordered in a Farey sequence, similar to the Devil's staircasex
ordering of resonance tongues for two coupled oscillatorss 4} 1t 13
[30] and for the homogeneous BZ reactif81,32. L
We investigated two different chemical conditions. The
chemical conditions that yield 0.072 Hz spirals hawen
tongues that bend toward higher frequency as the light inten®2
sity | is decreasedqFig. 4@)]. For the chemical conditions & 2
that yield 0.020 Hz spirals, the tongues do not bend much a
low frequency[Fig. 4b)]. The bending of the tongues is
caused by a shifting fronf,=0.02 Hz resonance at high
forcing intensity(the uniform oscillation frequengyto the
near-resonant response of the spiral wave frequdgdgr
lower forcing intensity. Since the spiral wave frequency for
the data in Fig. &) is the same as the uniform oscillation
frequency, the tongues do not bend in that dd:33.
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C. A quantitative measure of patterns 1 ) ) . . ) 0
Spatial Fourier transforms and correlation functions do _ (©) ()
not capture the temporal aspects of the patterns and did nc§ 4l Il 13

differentiate the data well because the patterns often com2

prise multiple wavelengths and orientations. Therefore, in-—=

stead of computing spatial Fourier transforms, we analyzec§ ] WW/W\/\WMZ

the temporal Fourier transform calculated for each point in 2

the pattern[12,13,23. The power spectrum of the signal, % 2}

averaged over the spatial pattern, gives information about the=

strongest frequency response. Additionally, the data were fil- 1 : : . . . 0

tered to keep the strongest response and then inverse Fouri 0 05 1 1.5 n -w2 0 w2 =

transformed. The complex amplitudes of the filtered system 7

give information about the phase distribution of the pattern.

Qualitatively different patterns were found to exhibit differ-  FIG. 5. Power spectra and phase histograms for near-resonant

ent shapes in the complex phase-plane representddhs 2:1 spiral wave patterns. Fram@—(c) show power spectra of the

[see Figs. (e)-1(h)]. response as the forcing frequency is varied across the tongue. The
power spectra, normalized to the forcing frequefgyshow that the
largest response is nearly halfut not exactly half the forcing

IV. PATTERN FORMATION frequency when the forcing is detuned from exact resongfide

: : i =0.5 as indicated by the vertical linghus the spiral wave pattern
We now describe the asymptotic patterns obsex ' does not lock to the forcing frequency. The peak$/dt=1 in (a)

Itrr:g ?rZZ?J)ér?Zigzn;r:?jrz?ngriteunJéi tsl)'ugeusgtzg:ntﬁcezirre]nbtefodri(z/i deaclpd (c) include power from the forcing light reflected from the
. C . . reactor face into the camera. Frangds~(f) show histograms of the

!nto e categone_&s. those which are resonant with the forc; hase of the pattern near the peak response. The histograms have
ing and th_ose which ar(? near resonant. Th,e resonant patter, peaks which indicates that the pattern is mostly concentrated
are standing waves which lock to the forcing frequency and,q4r one of two phases; the two phases are separatedfyrcing

showm peaks i_n the phase response. The near-resonant Pafaquency:(a) and(d) f;=0.0500 Hz(b) and(e) f;=0.0556 Hzc)
terns are traveling waves and spiral waves which do not loclngf) f,=0.0625 Hz.

to the forcing but still shown peaks in the phase response.
We differentiate the two types of responses using their ower spectra of resonant pattestanding wavesfor three

power spgctra._ If the system'|s reso”.a”t' the response fr orcing frequencies near exact resonance with the uniform
quency will adjust to be a rational ratio of the forcing fre-

uencv. For near-resonant response. however. the fre uenoscillation frequency. In this case the patterns lock 2
q Y. . . ponse, N q @’hown by the vertical lineeven when the forcing is detuned
does not adjust to be a rational ratio of the forcing frequenc

) ; 'Yrom exact resonance.
Figure 5 shows the power spectra and corresponding histo- We now discuss the different types of: 1 patterns that

grams of phase angle for 2:1 near-resonant patieisaly we observed
at three forcing frequencies near exact resonance with the '
spiral wave frequency. The peak of the subharmonic re-

sponse does not adjust g 2 (vertical line) as the frequency

is varied. The histograms of the phase, however, indicate that In the 1:1 region we observe a resonant response. In this
there is a two-phase response to the forcing even thougbase the entire pattern of chemical concentration oscillates
there is not exact resonance. In contrast, Fig. 6 shows theniformly in space with the forcing frequency, as measured

3

spoxid Jo soquunu

phase angle

A. 1:1 and 2:1 patterns

066217-4



RESONANCE TONGUES AND PATTERNS IN. PHYSICAL REVIEW E 69, 066217(2004)

@ (d) g (b) Im(a)
[ =] .
s 4} 1t 13 8
& g
va (=]
g 3f 1t 125 1o
2 8
@ 17
a0 2 B r \/\; 1 1
S
1 } : —'—J } } 0 ; i i Re(a)
o e) _ 5
b5 =1
£ 4} 1t 138 :
£ <] Im(a)
= S,
= 3 1t 12 =
3 =
=9 <R
@ 17
g Z-W | 1* 10
1 : : ; . 0
_|© ® .
) =
z 4 1t 138
& g
— Q
E 5f ) he .
23 a Im(a)
(\/)/ 17
00 2 B 1T b 1
] )
1 1 1 1 1 0 i 0
0 0.5 1 1.5 -t -n2 0 /2 T
fif phase angle
FIG. 6. Power spectra and phase histograms for resonant 2:1 .
standing-wave patterns. Fram@—(c) show the power spectra of ) , Re(a)
the response as the forcing frequency is varied across the tongue. 0

The power spectra, normalized to the forcing frequehgyshow

that the largest response is at exactly half the forcing frequency FIG. 7. Patterns observed in the 3:1 resonance region for differ-
(f/f,=0.5), as indicated by the vertical line. Fram@h—(f) show  €nt forcing amplitudesthe patterns are shown after filterind@he
histograms of the phase of the pattern near the peak response. TIRSPONSe is shown in they plane(left) and complex phase plane
histograms have two peaks corresponding to concentrations of tH&ight). () and(b) Spiral waves in the bottom of the 3:1 regidn,

pattern in regions that are separated in phaserbforcing fre- =269 w/nf, ff:9-1251 Hz (c) and(d) Spiral waves in the middle
quency:(a) and (d) f;=0.0333 Hz,(b) and (e) f;=0.0357 Hz,(c) of the 3:1 region, =382 W/n?, f;=0.0667 Hz. (d) and (e)
and (f) f;=0.0416 Hz. Standing-wave patterns found at the top of the 3:1 region,

=863 W/n?, f;=0.0769 Hz.

for a range off; andl values centered df. The shape of the
1:1 tongue in Fig. @) is different than the shape of the other gy stem and in a forced reaction-diffusion model with Bruss-
tongues. The other tongues bend toward higher frequency @iator kinetics was given in Ref21].
low forcing intensities. Instead we find 1:1 uniform patterns
at frequencies nedlf, even at very low forcing intensities.
We do find spiral patterns at slightly higher frequencies near
the bottom of the tongue, but we cannot distinguish 1:1 spiral In the 3:1 region we observe two qualitatively different
waves from unforced spiral waves. types of patterns. At low forcing the 3:1 patterns are rotating

Unlike the 1:1 resonant response, for which we observedpirals, such as those shown in Fig. 7. At low forcing inten-
only a single qualitative pattern, several qualitatively differ-sity, the spirals have a fairly evenly distributed phase angle
ent patterns were observed inside the 2:1 region. In this reand a nearly circular shape in the complex phase plane. At
gion, the oscillation phase responds to either the first or théigher forcing intensity, the phase becomes more concen-
second forcing cycle, which occurs within a single oscilla-trated in three phases, and the shape in the complex phase
tion cycle of the pattern. The 2:1 patterns are thereforglane becomes more triangular. This trend is observable in
formed from spatial arrangements of regions oscillating afigs. 1d) and qf).
the same frequency but which differ in phase tyA de- An abrupt transition from traveling-wave patterns to what
scription of the different 2:1 patterns observed in the BZappear to be standing-wave patterns is observed in the 3:1

B. 3:1 patterns
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FIG. 8. BZ spirals ob din the 5:1 ioh FIG. 9. BZ spirals observed in the 6:1 resonance regioh at
- spirals observed in the 5:1 resonance regioh at _ ;g W/n?, f,=0.1001 Hz. The patterns are filtered to keep only

=661 W/nt, .ff:0.100 Hz. The patterns are filtered to keep 9”'y the frequencies shown by the gray banddp (a) Phase patterns in
the frequencies shown by the gray banddn (a) Phase patterns in the x-y plane.(b) Phase in complex plangc) Average temporal

x-y plane.(b) Phase in complex planéc) Average temporal power power spectrum(d) Histogram of phase angle.
spectrum(d) Histogram of phase angle.

resonance region as the forcing amplitude was increase
The transition between these pattern types was observed a
fixed forcing frequency of 0.075 Hz dswas increased past

roughly 460 W/n3, and was also observed for fixed forcing

hase traveling patterns to two-phase 4:1 resonant standing-
ve patterns was fourfd.3]. This bifurcation has not been
observed in our experiments, perhaps because the forcing

amplitudes in a range of 300—400 Wiwhen f, was in- light intensity I available may be insufficient to reach the

. ._bifurcation. Another possibility is that the patterns observed
creased past roughly 0.065 Hz. The experimental resolutpalere at a frequency near four times the spiral wave fre-

is not enough to determine the functional form of the tran3|-quencyfs instead of near four times the uniform oscillation

tion. frequencyf,. In the experimentally accessible rangd ofve

The 3:1 standing-wave patterns with stationary or nearly, e ohserved only 4:1 spiral wave patterns and none of the
stationary fronts consist of irregularly shaped domains d|f'fer-more complicated pattern behavior found in the 4:1 forced
ing in phase by /3 (see Fig. J. Often the fronts are rough, CGL model[36]

i.e., have short wavelength modulations that appear stable

over a hundred o_scillation cycles Of. the pattern, as can baiscussed in Ref§35,37,38 and the 4:1 rotating spirals dis-
seen in the standing-wave pattern pictured in Fig).1 cussed in Ref[13] are not resonant since they are all trav-

The fronts in the standing-wave patterns are either stationé"ng patterns

ary or propagate on a time Sca'e orders of magnit“de larger Finally, we present examples of near resonant 5:1 and 6:1
than the unforced spiral period. If the latter is the case, thg)atterns i,n Figs. 8 and 9, respectively
: . , s

patterns are not precisely standing waves, and over a long

time could evolve to other patterns such as large and slowly

rotating three-phase spiral waves. If so, these patterns could V. REACTION-DIFFUSION MODEL

be understood to be observations of the 3:1 patterns pre-

dicted by the forced complex Ginzburg-Land&@GL) equa- As a model for a periodically forced oscillatory system

tion [18,39. we use a version of the FitzHugh-NagurgieHN) reaction-
diffusion equations

u=u-ul-r+Va, (1a)

é;:en in Ref.[34]. In those models a bifurcation from four-

Patterns such as the 2:1 Bloch fronts and spiral waves

C. Other patterns

Rotating four-phase spiral patterns, e.g., Fig&) Jand
1(h), are the only pattern type observed in the 4:1 resonance
region of the BZ experiments. A detailed description of 4:1where the fieldsi(x,y) and v(x,y) represent concentrations
resonance in the forced CGL equation and in the FitzHughef chemicals in a simple model of a chemical system. We
Nagumo and Brusselator reaction-diffusion models wasadd explicit time dependence to the FHN system as paramet-

= e[u—(a; + v sin wt)v] + 6V, (1b)
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ric sinusoidal forcing with amplitudey and frequencyws. N (b) ' " T
The parametes is the ratio of the time scales afand» and
d'is the ratio of the diffusion rates af andv. In the follow-
ing we fix the parameters=0.1, §=0.1, a;=0.5, and vary
the forcing frequency and amplitude.

In the absence of forcingy=0, the equations have a spa-
tially uniform solutionu=»=0. The parametes controls the
stability of this solution. Where >2, u=v=0 is stable, and
at e=2, there is a Hopf bifurcation to uniform oscillations. ‘ , ,
Beyond the Hopf bifurcation Eq$l) also support traveling 0 Re(a)
phase waves. Our numerical investigations are conducted it 5 ; ; . ; .
the parameter range where uniform oscillations and phast © (d)
waves both exist. In two space dimensions phase waves typig
cally form into rotating spirals, each one organized around a2
core where the amplitude of oscillations is zero. For the pa-
rameters above, the spiral wave frequeriey~0.237 is
faster than the homogeneous oscillation frequeriay
~0.215; once formed, spiral waves spread to fill the entire

system. 00 05 10 15 20 - -m2 O 2 n
@/ phase angle

s
w £

)
spoxid Jo oquiu

<
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A. Periodic forcing and data analysis

A sinusoidal parametric forcing, homogeneous in space, i ‘FIGtH 10. _Spliral wavfe in Eq1) V¥i:]h pertitodic forcir}gljtat r;e?rli
corieq by e oo anee i) A e v et T s o e o
the BZ experiment, when the forcing amplitude is high y d y gray n @ P

. . > tern inx-y plane.(b) Phase in complex planéc) Average temporal
enough the system can Ioc_:k at ratlon_al ratlo_s of the fo_r Clngf)ower s)p/)gctrum.(d) Histogram oF; phgse angle. F?aramert)egs:
frequency. Frequency locking of spatially uniform solutlons=0 5, w;=0.474,x=[0,256, y=[0, 256
to Eq. (1) occurs in tongue-shaped regions in they pa- S T T

rameter plane. A complete diagram of the pattern-forming . . ) .
tongues was not computed for the FHN equation with thig?OWer spectra. The filtered signalin x-y domain is shown

forcing scheme. We have only investigated certain resoll Fi9- 1d@), and Fig. 10b) shows the same data plotted in
nances to compare with the BZ chemical experiment. oulhe complex phase plane. The width of the_ filter is shown in
numerical investigations show that the size and shape of di’® POWer spectrum by the gray bafsee Fig. 1@c)]. The
ferentm: n tongues depend on the exact form of the parametphase plane shows that different parts of the spatial domain
ric forcing in Eqgs.(1) [39]. Tongue diagrams obtained by &€ in different relative phases, all oscillating at the same
forcing other terms of the FHN model were presented inireduency. The phase is not uniformly distributed but has
studies of locking to uniform oscillations in the oscillatory P€aks near two phases that become apparent in the histogram

FHN model[40,41. A diagram for the 2:1 tongue of a peri- °f the phase angle shown in Fig. (@@
odically forced Brusselator reaction-diffusion system was
given in Ref.[21]. B. Pattern Formation

The data from the numerical solutions of the forced FHN . o .
equation are processed to extract phase information, as in the 1€ FHN equationgl) have two intrinsic frequencies, the
experimental system. Every 1.4 time units, we store the valuniform oscillation frequencys, and the spiral wave fre-

ues ofu(x,y) and »(x,y) at each computational grid point dUeNCyws. For some choices of parameteesg., 6=1) these
x.,y;- The discrete Fourier transform is applied to the timetwo frequencies are the same, but for the parameters chosen

variable ofu(x,y,t) to get the frequency respondé,y, o) in this study the two frequencies difféw> wy). Because of

for each point in the pattern. The averaged power spectrurwiS there are two pqssit_)le diffgrent resonant response condi-
of the signal, tions: when the forcmg is a rational multiple of eitheg or

ws. In the following we will show how the FHN equations
(1) respond to forcing in both of those cases. In the BZ

ot 2
yiEj |80, )%, (2 experiment this distinction is harder to make.

1
NN

P(w)

whereN, andN, are the number of grid points in theandy
directions, is then examined to determine the system re-
sponse. The response frequency is isolated from the signal
using a box filter centered at the response frequesncwith When the forcing is a rational multiple of theniform
width A. The filtered signal is then inverse Fourier trans-oscillation frequencyw,, spatially uniform solutions of Eq.
formed, which gives the response in tinax,y,1). (1) are found for a range of forcing frequeney and ampli-
Figure 10 shows an example of a 2:1 spiral wave with theude y. The m:n frequency-locked solutions form tongue
peak frequency response at/2 displayed clearly in the shaped regions in thew;-y parameter plane(Arnol’d

C. Patterns atm: n response of the uniform oscillation
frequency
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log (Spectral Power)
spoxid jo roqunu

log (Spectral Power)
spoxid jo roqunu

D. Patterns atm: n response of the spiral wave frequency

log (Spectral Power)
spoxid Jo roquinu

(a) ' ' (d) ' ' ' is near resonant but not s_trictly frequency Iockeq since the
spiral rotates slowly(relative to the forcing period At
higher forcing amplitude the pattern is standing waves. The
spiral waves and standing waves are similar to those found in
I Il ip) the BZ experiment and in forced complex Ginzburg-Landau
and Brusselator mode[44,21,22,42.
[ 1| In the 3:1 resonance the system responds at one-third the
forcing frequencyw, =w;/3, and the patterns consist of spa-
tial regions of three locked phases. In our exploration in
: : forced FHN model we find that the three locked phases or-
(b) (e) ganize into rotating spiral waves.
Patterns in a forced 4:1 FHN model consist of four-phase
spiral waves and two-phase standing waves and are dis-
I 1l s cussed in detail in Ref13].
J The domain in parameter space where frequency-locked
patterns (standing waves exist is different from that of
I 1T 1! frequency-locked uniform solutions. Recently it was discov-
ered that frequency-locked standing-wave patterns can exist
0 outside the resonant tongue of spatially uniform solutions or
© () that spatial instabilities can reduce the range of resonant pat-
terns[43].
When the forcing frequency is close to a rational multiple
of the spiral wave frequency, the spiral does not frequency
I 1T lock to the forcing but still shows a near-resonant response.
This can be seen in the nonuniform phase distribution of the
: : . . y 0 forced spiral waves, witlm peaks for waves forced near an
o 05 1 15 m -®2 0 m2 = m:n resonance. For example, forcing the spiral wave at ap-
w/ Wy phase angle proximately twice the spiral frequency;= 2w, causes the
spiral to respond by shifting the relative oscillation phases

FIG. 11. Resonant standing-wave response in the 2:1 forcegyithin the spiral to be concentrated near two phases, as
FHN Eq. (1). (8«c) Power spectra for three different forcing fre- shown in Figs. 1@)—12f).
quencies nearad. The frequencies are normalized to the forcing Figure 12 shows the spiral wave response when the forc-
frequencyws. The peak subharmonic response is exactly at half thqng frequency is scanned through the spiral frequency. The
forcing frequency, even when the forcing is not exactyo2as  ayimum response in the power spectrum is @g2 when
gﬂfgﬁgt%ﬁ;ﬁr“ﬁa‘ line at|>/ ‘;’fz?]'s'(d_) a}nd(e) H'Stog?ﬂ]s the forcing frequency is not exactly twice the spiral wave

) ' phase angle for the spira WaVEEIR(C). N frequency; the pattern is not frequency locked but it is near
two peaks in the distribution show that the pattern response is p“fesonant In contrast to a quasiperiodic response farther away
marily in two phases separated by an anglemofParametersy : L .
=3.0.(a) wr=0.349,(b) w;=0.370,(C) w;=0.419. from resonanc¢21], near-resonant patterns exhibit a nonuni-

form distribution in the histograms of the phase angle. This
tongues. The shape of the resonant tongues depends on thdistribution is farthest from uniform when the forcing is clos-
exact form of the forcing39]. est tow;/2, see Figs. 1@)—12f).

As in the BZ experiment, patterns may form in the Forcing near other resonances of the spiral wave fre-
frequency-locked tongues. Resonant pattern solutions consigtiency also results in a near-resonant response, with the
of standing waves connecting regions of different phasesaumber of peaks in the phase histogram corresponding to the
For example, in the 2:1 resonance, standing waves consist af:n resonance. In the 3:1 resonance we observe three peaks
fronts between regions in space that are oscillating at thand in the 4:1 resonance we find four peaks. Other spiral
same frequency but out of phase by The fronts must be resonances such as 5:1 and 6:1 can also be found. These
stationary for the pattern to be strictly frequency locked,results are similar to observations near-resonant spirals in the
since any motion indicates that the phase is drifting and thuxf the BZ experiment.
at least in the vicinity of a front, the frequency is also slowly  To characterize the effect of the forcing on the spiral wave
changing. pattern, we measured the deviation of the phase from a uni-
A 2:1 resonance is found when the forcing frequency isform distribution. For an unforced spiral wave, the histogram
nearly twice the uniform oscillation frequencw;~2w,  of the phase near the spiral frequency is flat, indicating that
(Fig. 11). For sufficiently high forcing amplitude, the system the phase is uniformly distributed betweetr and 7. When
frequency locks atv/2, in one of two phases separated bythe spiral wave is nearly 2:1 resonant, the histogram shows
7. Patterns form from the two phases. At low forcing ampli- two peaks that are separated #yin the phase distribution.
tude the pattern is a two-phase rotating spiral wave and thuEhey are shown in Figs. 1@)-12Xf).
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§ 3 5 FIG. 13. They? statistic of the deviation in the phase distribu-
2 EE tion of the 2:1 forced spiral wave from a uniforfanforced spirgl
= e, distribution. Thex? value increases exponentially as the forcing
§ 1T 12 E. amplitude increases. Parameters in Hd): £=0.1,6=0.1,3
& e =0.5,w;=0.465.
® 1 11
- VI. DISCUSSION
. . . . . 0 ) )
0 05 1 15 o o2 0 m2 = The BZ chemical system in an open gel reactor was used
to identify multiple tongues, each with a differemt n reso-
By phasc angle nance, in the forcing frequency-amplitude parameter plane.

Such a phase diagram has not been previously reported for a
spatially extended oscillatory system. The resonance tongues
wil2< g (b) w/2=awg (C) w/2>w, The solid line indicates &€ _f9und to be ordereql in a Farey sequence, similar to the
ws/2. When the forcing is not exactly in resonance the peak re-Devlls Stalrgase ordering of resonance tongues for two
sponse in the power spectra differs fram/2 indicating that the ~COUpled oscillator$30] and for the homogeneous BZ reac-
spiral is not frequency lockedd) and(e) Histograms of the distri-  tion [31,32. o

bution of phase angle for the spiral waveganc). The two peaks The diffusively coupled oscillations we measure respond
in the distribution show that the spiral wave responds to the forcing0 €xternal forcing either resonantly or at near resonance
by redistributing the internal relative distribution of the phase even(quasiperiodically but with am-peaked phase distributipn
though the pattern is not frequency locked. Parameter€.3,(a)  The resonant patterns are standing waves that frequency lock
0;=0.465,(b) w;=0.474,(C) w;=0.493. to am:n ratio of the forcing frequency. In this case, a power
spectrum of the resulting resonant pattern shows a single

The nonuniform phase response was measured by the crgrimary peak atf/m, along with its higher harmonics, and
square statistic relative to the uniform distribution. The phasdn€ phase distribution has peaks shifted by 2/m. The
data atk=256x 256 computational grid points was binned Near-resonant patterns are traveling waves which do not lock

into 100 equal size bins betweenr-and . The chi-square 10 @ ratio of the forcing frequency but have a response near
statistic is fs/m. However, the phase distribution still showspeaks.

This near-resonant quasiperiodic behavior is different from
(N, - E)? quasiperiodicity farther_ away from resonance, where patterns
—E (3)  have a flat phase distributid21,42.
Both the resonant and near-resonant behavior are also ob-
served in a FitzHugh-Nagumo reaction-diffusion model with
sinusoidal periodic forcing, similar to the experiments.

FIG. 12. Response of a 2:1 forced spiral wave in the FHN Eq.
(1). (a«c) Power spectra for three different forcing frequenciss

X=2

whereN,; is the value in bin and E=k/100 is the expected
value. Figure 13 shows the dependenceg©bn the forcing
amplitudey when the forcing frequency is neawg The x?
value increases exponentially as the forcing amphtudg is in- ACKNOWLEDGMENTS
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