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Experiments on a periodically forced Belousov-Zhabotinsky chemical reaction show front breakup
into a state of spatiotemporal disorder involving continual events of spiral-vortex nucleation and
destruction. Using the amplitude equation for forced oscillatory systems and the normal form equations
for a curved front line, we identify the mechanism of front breakup and explain the experimental
observations.
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Spatiotemporal disorder in extended systems com-
monly involves the spontaneous creation and annihilation
of localized structures such as defects and vortices [1–3].
The driving forces for the nucleation of defects and
vortices are instabilities of periodic patterns or fronts.
Defects in periodic patterns often result from the
Benjamin-Feir-Newell instability [4,5], while spiral-
vortex nucleation in bistable systems has been related
[6,7] to a front instability—the nonequilibrium Ising-
Bloch (NIB) bifurcation [8–11].

The NIB bifurcation involves the destabilization of a
stationary ‘‘Ising’’ front and the appearance of two coun-
terpropagating ‘‘Bloch’’ fronts through a pitchfork bi-
furcation. It designates the onset of traveling wave phe-
nomena and has been studied in several physical contexts
including liquid crystals [12,13], chemical reactions [14],
and catalytic surface reactions [15]. Theoretical studies of
the NIB bifurcation have utilized the FitzHugh-Nagumo
reaction-diffusion model and a variant of the complex
Ginzburg-Landau equation that describes amplitude
modulations of forced oscillations.

Studies of the FitzHugh-Nagumo model revealed the
following scenario for spontaneous nucleation of vortices.
In the vicinity of a NIB bifurcation, dynamic processes
such as the increase of curvature along a front or inter-
actions between fronts allow transitions between the two
Bloch fronts [6,7,14]. A transition from one Bloch front to
another represents a reversal in the direction of propaga-
tion. When the reversal occurs locally along a segment of
the front line, a new pair of spiral vortices is nucleated at
the points between the counterpropagating segments.
Local curvature increases that lead to vortex nucleation
can result from a transverse front instability [7]. This
instability continues to drive vortex nucleation after nu-
cleation events have already occurred and produces a state
of spatiotemporal disorder.

Experimental indications pointing toward the relations
among the NIB bifurcation, spontaneous vortex nuclea-
tion, and spatiotemporal disorder, can be found in studies
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of chemical reactions [16] and liquid crystals [12,13,17].
However, direct experimental evidence tying front insta-
bilities to vortex nucleation and disorder has not yet been
provided. In this Letter we demonstrate experimentally
how a transverse instability of a Bloch-front near the NIB
bifurcation leads to vortex nucleation events, and how
these events induce a transition to a disordered state we
call ‘‘Bloch-front turbulence.’’

The experimental system we study is the oscillatory
photosensitive Belousov-Zhabotinsky (BZ) reaction,
which is periodically forced in time with spatially uni-
form light. The chemical reaction occurs in a thin,
porous-glass membrane 0.4 mm thick and 22 mm in
diameter. The two faces of the membrane are fed by
well-stirred reservoirs, each containing continuously re-
freshed reagents for the ruthenium-catalyzed BZ reaction
[18,19]. Light from a low-intensity tungsten lamp is
transmitted through the membrane and the optical den-
sity of the chemical concentration patterns is measured at
452 nm with a charge-coupled device camera.

The unforced reaction oscillates with a natural fre-
quency f0 and the chemical pattern is rotating spiral
waves. We periodically forced the system with light at
approximately twice the natural frequency (ff � 2f0)
and with a varying amplitude I. When the forcing ampli-
tude is large enough, the oscillations entrain to the forcing
frequency in one of two phases that are � out of phase
with each other. Depending on the initial state of the
system, the oscillators may entrain in either of the two
phases and patterns form in the membrane with fronts
separating regions of different oscillation phase [20].

We prepare the initial state of the system with a pattern
consisting of a single planar front separating the two dif-
ferent oscillation phases. This is achieved using a high
forcing amplitude, I�67W=m2, and a forcing frequency
near the natural oscillation frequency, ff � 0:025 Hz.
Half of the reactor is forced � out of phase with the other
half, creating a single stationary front in the center of the
membrane. After the oscillations are entrained, the forc-
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ing frequency is changed to near twice the natural fre-
quency, ff � 0:06 Hz, to lower amplitude, I � 56 W=m2,
and with a uniform spatial phase. The resulting pattern is
a standing wave with a single nearly planar front between
two phases, as shown in Fig. 1(a) [21].

At the forcing amplitude I � 56 W=m2 the front is
stationary (Ising front). It begins to travel when the forc-
ing amplitude is reduced past a critical intensity I �
26 W=m2. Further reduction in the forcing amplitude
produces traveling fronts (Bloch fronts) with larger front
velocities, indicating the presence of a NIB bifurcation
near I � 26 W=m2.

Near the NIB bifurcation we also observe the trans-
verse instability of the Bloch front. As shown in
Figs. 1(a)–1(c) the transverse instability of the Bloch
front causes small perturbations of a nearly planar front
to grow. As the perturbations grow they cause the nuclea-
tion of spiral-vortex pairs. Figures 1(d)–1(f) show the
spatial vortex distribution; the vortices are first distrib-
uted along the initial front line, but as time evolves they
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FIG. 1. Spiral-vortex nucleation in the BZ system. Frames
(a)–(c) show the phase of the oscillations at near half the
driving frequency for three different times (t � 100; 300, and
1700 s) [21]. Frames (d)–(f) show the position of the vortices
along the front line (as solid circles) at the corresponding
times. (a) The initial nearly planar front is unstable to trans-
verse perturbations. (b) Vortices form in pairs along the front
line. (c) Vortices eventually fill up the entire system. The figures
show a 19:1 mm� 19:1 mm (200� 200 pixel) region of the BZ
system with I � 25W=m2, ff � 0:06 Hz. Chemical conditions
are given in Ref. [19].
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fill up the whole system into a state of Bloch-front
turbulence.

New vortex pairs are continually created and the num-
ber of vortices grows in time as Fig. 2 shows. After the
initial transient an asymptotic mean value of about 90 is
reached. Fluctuations around the mean are caused by the
creation and destruction of vortex pairs. We also observe
vortices meandering in and out of the 19:1� 19:1 mm2

region shown in Fig. 1. However, this occurs far less often
than pairs of spiral vortices are created and destroyed,
and so does not significantly contribute to the vortex
fluctuations.

The experimental system can be modeled by a variant
of the complex Ginzburg-Landau (CGL) equation which
describes amplitude modulations of a periodically forced
oscillatory system near a Hopf bifurcation to uniform
oscillations. The equation for the oscillation amplitude
is [22]

@tA��	� i��A��1� i��r2A��1� i
�jAj2A��A
;

(1)

where 	 is the distance from the Hopf bifurcation, � is
the detuning, � is dispersion, 
 is a nonlinear frequency
correction, and � is the forcing amplitude. Equation (1)
has two stable stationary solutions which correspond to
uniform oscillations at exactly half the forcing frequency.
The oscillation phases of the two solutions differ by �
with respect to one another. Equation (1) also has sta-
tionary Ising front solutions biasymptotic to the two sta-
tionary uniform solutions. These front solutions lose
stability to Bloch fronts as � is decreased below the
NIB bifurcation, �nib��� [9]. The front solutions can
also go through a transverse instability as � is decreased
below another threshold, �T��� [23].

Numerical solutions of Eq. (1) in the vicinity of the
NIB bifurcation reproduce the experimental observa-
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FIG. 2. The total number of vortices in a 19:1 mm�
19:1 mm (200� 200 pixel) region of the BZ system. Over
time the number of vortices increases from the initial front
state with zero until the spirals fill the entire system and the
total number of vortices fluctuates around a mean value of
about 90.
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tions, as Fig. 3 shows. As in the chemical experiment, the
initial nearly planar front [Figs. 3(a) and 3(d)] is unstable
to transverse perturbations and small perturbations grow
and nucleate vortex pairs [Figs. 3(b) and 3(e)]. The result-
ing state shown in Figs. 3(c) and 3(f) is Bloch-front
turbulence with the continual creation and destruction
of vortex pairs.

A closer examination of a vortex nucleation event can
be obtained from the normal form equations for a curved
front line in the vicinity of the NIB bifurcation. The
equations for the front curvature, �, and the planar front
velocity, C0, are [24]

d�
dt

� �

�
�2 �

@2

@s2

�
Cn; (2a)

dC0

dt
� �anib � a�C0 � bC

3
0 � c��

@2C0

@s2
; (2b)

where Cn, the normal front velocity, is related to � and C0

through the relation Cn � C0 �D�, s is arclength, and d
dt

is the total time derivative: ddt �
@
@t�

ds
dt

@
@s . The arclength
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FIG. 3. Spiral-vortex nucleation and formation of Bloch-front
turbulence in a numerical solution of the CGL Eq. (1). Frames
(a)–(c) show the phase arg�A� of the solution at three different
times, t � 0; 620, 7820. Perturbations on the unstable front
solution grow and pairs of vortices form along the front.
Frames (d)–(f) show the front line [defined as �A� � 0] and
vortices [�A� � �A� � 0] (solid circles) at the corresponding
times. The parameters are 	 � 0:5, � � 0:15, � � 0:35, 
 �
0, � � 0:2 on a domain size of �x; y� � �256 256� with no-flux
boundary conditions.
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changes in time, when the front is curved and moving,
according to ds

dt �
R
s
0 �Cnds

0.
Equations (2) capture the NIB bifurcation for a planar

front as the bifurcation parameter a crosses the threshold
anib; an Ising front solution, �C0; �� � �0; 0�, loses stabil-
ity and two stable Bloch-front solutions, �C0; �� �
�


��������������������������
�anib � a�=b

p
; 0�, appear. In the Bloch regime (a <

anib) Eqs. (2) have a kink solution biasymptotic (as jsj !
1) to the two Bloch-front solutions as Fig. 4(a) shows. In
the two-dimensional x-y plane this kink solution de-
scribes a rotating spiral wave [Fig. 4(b)].

Equations (2) also imply that Bloch fronts close to the
NIB bifurcation are unstable to transverse perturbations
provided c=D> 0 [25]. To see this, we study the stability
of planar Bloch fronts to perturbations of the form
��C0; ��� exp��t� iQs� � c:c:. Inserting the perturbed
forms for C0 and � in Eqs. (2) gives the neutral stability
(� � 0) relation

atr�Q� � anib �
c
2D

�Q2: (3)

The first mode to grow is the zero mode, Q � 0. Within
the range anib �

c
2D < a < anib Bloch fronts are unstable

to transverse perturbations. As a approaches the NIB
bifurcation threshold, anib, modes with higher and higher
wave numbers grow. When the curvature perturbations
produced by these modes are sufficiently large, local
transitions between the two Bloch fronts are induced
and vortex nucleation events take place [26] as demon-
strated in Fig. 5.

In conclusion, we have demonstrated, in a periodically
forced oscillatory Belousov-Zhabotinsky reaction, a
mechanism for creating spatiotemporal disorder. The
mechanism consists of the creation of spiral-vortex pairs
through a transverse instability of fronts in the vicinity of
a nonequilibrium Ising-Bloch bifurcation. We used an
amplitude equation model, the forced complex Ginzburg-
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FIG. 4. Spiral wave solution of the front line Eqs. (2). (a) The
front velocity and curvature have a kink solution bi-asymptotic
to the two block fronts as jsj ! 1. (b) In the x� y (laboratory)
coordinate frame the kink solution is a spiral wave. The core of
the spiral wave is characterized by zero curvature and front
velocity. Parameters: a � 5:99, anib � 6:0, b � 0:17, c � 6:0,
D � 1:0.
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FIG. 5. Nucleation of a spiral-vortex pair in the front line
equations (2). (a)–(c) The front velocity C0 and curvature � vs
the arclength s. (d)–(f) The corresponding representation in the
x� y (laboratory) coordinate frame. (a),(d) A small perturba-
tion in the curvature grows. (b),(e) A portion of the domain
reverses direction and a spiral-vortex pair nucleates along the
front line. (c),(f) A pair of rotating spiral waves forms. Pa
rameters: a � 5:97, anib � 6:0, b � 0:165, c � 6:03, D � 1:0.
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Landau equation, to reproduce the experimental observa-
tions with numerical solutions, and further described the
mechanism for vortex creation with the normal form
equations for a curved front line.
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