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Uniform oscillations in spatially extended systems resonate with temporal periodic forcing within

the Arnold tongues of single forced oscillators. The Arnold tongues are wedge-like domains in the

parameter space spanned by the forcing amplitude and frequency, within which the oscillator’s

frequency is locked to a fraction of the forcing frequency. Spatial patterning can modify these

domains. We describe here two pattern formation mechanisms affecting frequency locking at half

the forcing frequency. The mechanisms are associated with phase-front instabilities and a Turing-

like instability of the rest state. Our studies combine experiments on the ruthenium catalyzed

light-sensitive Belousov-Zhabotinsky reaction forced by periodic illumination, and numerical and

analytical studies of two model systems, the FitzHugh-Nagumo model and the complex Ginzburg-

Landau equation, with additional terms describing periodic forcing. © 2006 American Institute of

Physics. �DOI: 10.1063/1.2346153�

When a nonlinear oscillator is periodically forced by

some external source, its oscillations can adjust and en-

train to the forcing. The resulting dynamics is periodic

with an oscillation frequency being a rational fraction of

the forcing frequency. This entrainment, or frequency-

locking, phenomenon occurs over a range of forcing fre-

quencies and amplitudes, and is independent of the na-

ture of the oscillators, which can be mechanical,

electrical, chemical, or biological. Frequency locking ex-

hibits many universal features and has been carefully

studied for a variety of oscillator systems. Whether these

universal features persist under conditions in which the

oscillations are extended in space is the subject of our

examination. We use an oscillatory chemical system

spread in a thin gel layer, and two model systems, the

FitzHugh-Nagumo (FHN) model and the complex

Ginzburg-Landau (CGL) equation, a generic equation

for an oscillating field near the onset of oscillations, to

explore how spatial extent changes the universal proper-

ties of frequency locking. Our studies show that pattern

formation can extend or reduce the range of frequency

locking. Two pattern formation mechanisms responsible

for such changes are identified, a phase-front instability

designating a transition from standing-wave to traveling-

wave dynamics, and a Turing-like instability inducing

standing-wave patterns.

I. INTRODUCTION

Oscillatory dynamics have been observed in a variety of

dissipative nonequilibrium systems including lasers, convec-

tive fluids, chemical reactions, and cardiac tissues.
1–4

Among

these systems, oscillating chemical reactions subjected to

time-periodic forcing, have been particularly instrumental in

exploring pattern formation phenomena.
5,6

Experiments on

the Belousov-Zhabotinsky �BZ� reaction demonstrated a

wide range of phenomena not normally seen in a single pat-

tern forming system. These include traveling phase waves,

Turing-like patterns, front instabilities leading to fingering

and vortex-pair nucleation, spiral turbulence, and more.
7,8

Oscillating systems often respond to periodic forcing by

adjusting their oscillation frequencies to rational fractions of

the forcing frequency.
9

This so-called frequency-locking

phenomenon is accompanied by another significant outcome

of the periodic forcing multiplicity of stable phase states.
4

Each phase state represents spatially uniform frequency-

locked oscillations with a fixed oscillation phase. A well-

studied example is the 2:1 resonance where the system re-

sponds at exactly half the forcing frequency.
10–12

In this case

there are two stable phase states whose oscillation phases

differ by �. Along with the two uniform phase states, spatial

front structures biasymptotic to the two states exist. Trans-

verse instabilities and nonequilibrium Ising-Bloch �NIB� bi-

furcations of these front structures induce a variety of pattern

formation phenomena. The 2:1 resonance exhibits yet an-

other outcome of periodic forcing—a finite-wave number in-

stability leading to standing-wave Turing-like patterns.

In the parameter plane spanned by the forcing frequency

and forcing amplitude, spatially uniform resonant dynamics

are confined to wedge-like domains, the so-called Arnold
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tongues.
13,14

Are these resonance domains affected by the

appearance of stationary or time-dependent patterns? In this

paper we address this question in the context of the 2:1

resonance.
15

We review pattern formation mechanisms asso-

ciated with front instabilities and Turing instabilities, and

examine the power spectra of the time signals for the result-

ing dynamics. Our studies involve experiments on the ruthe-

nium catalyzed light-sensitive
16,17

Belousov-Zhabotinsky re-

action, periodically forced in time with spatially uniform

light, and numerical studies of two model systems, the

FitzHugh-Nagumo �FHN� model and the complex Ginzburg-

Landau �CGL� equation, with additional terms describing pe-

riodic forcing.

II. THE BZ EXPERIMENT

The BZ reaction takes place in a reactor system contain-

ing a thin porous Vycor glass membrane that is 0.4 mm thick

and 22 mm in diameter. Typical chemical patterns observed

in the membrane have length scales of 0.5 mm or greater and

are effectively two dimensional. Reagents diffuse homoge-

neously from continuously stirred reservoirs into the glass

through its two faces. We image the reaction by passing spa-

tially homogeneous low-intensity light through the mem-

brane, and measure the relative intensity of the transmitted

light using a charge-coupled device �CCD� camera bandpass

filtered at 451 nm, the peak absorption frequency of the ru-

thenium catalyst. Regions of the membrane that contain a

high concentration of Ru�II� pass low-intensity light to the

camera; regions that contain a low concentration pass a

higher intensity.

We periodically perturb the light-sensitive BZ oscillatory

reaction with light of different intensities and pulse frequen-

cies to investigate the existence, shape, and extent of Arnold

tongues in a spatially extended oscillatory system.
18

We find

regions of resonance in the forcing parameter plane �see Fig.

1� ordered in the Farey sequence of rational numbers, a sig-

nature of the resonance domains studied by Arnold and oth-

ers. These experimental resonance domains also exhibit fun-

damental differences; in particular, in the breadth of

resonance in the frequency dimension and in the extent of

resonance observed in the amplitude dimension. The range

of resonance is both extended and diminished through pat-

tern formation. We explore various mechanisms in the con-

text of the 2:1 resonance domain.

III. MODEL SYSTEMS

A. The forced FitzHugh-Nagumo model

As a model for a periodically forced oscillatory system

we use the FitzHugh-Nagumo reaction-diffusion equations

modified to include time-periodic forcing

ut = u − u3 − v + �2u , �1a�

vt = ��u − a1v − a0 + �v sin�� ft�� + ��2
v . �1b�

Here u�x ,y� and v�x ,y� are scalar fields representing the con-

centrations of activator and inhibitor types of chemical re-

agents. The periodic forcing is assumed to be sinusoidal with

amplitude � and frequency � f. The parameter � is the ratio

of the characteristic time scales of u and v, and � is the ratio

of the diffusion rates of u and v.

In the absence of forcing, �=0, Eqs. �1� have a spatially

uniform solution �u0, v0�. This solution loses stability in a

Hopf bifurcation to uniform oscillations as the parameter � is

decreased below a critical value �c. For the symmetric model

�a0=0� �c=1/a1 and the Hopf frequency is �0=�1/a1−1.

Beyond the Hopf bifurcation �i.e., below �c� Eqs. �1� also

support traveling phase waves.

Forcing the system at a frequency � f �2�0 either leads

to quasiperiodic oscillations or, when the forcing is strong

enough, to periodic oscillations at a frequency �=� f /2. The

latter case corresponds to 2:1 frequency-locked oscillations

where the system adjusts its oscillation frequency to �

=� f /2 despite the fact that �0�� f /2. Figure 2 shows a nu-

merical computation of the 2:1 resonance boundaries

�Arnold tongue� for uniform oscillations, above which fre-

quency locking takes place.

B. The forced complex Ginzburg-Landau equation

Near the Hopf bifurcation, where the oscillation ampli-

tude is small, the u and v fields can be approximated by

u � u0 + �Aei�f/2t + c.c.� , �2a�

v � v0 + ��Aei�f/2t + c.c.� , �2b�

where A is a complex-valued amplitude, slowly varying in

space and time. For weak forcing, the amplitude A satisfies

the complex Ginzburg-Landau equation,
20–23

At = �� + i��A + �1 + i	��2A − �1 + i
��A�2A + �A*. �3�

The term A* in this equation is the complex conjugate of A

and describes the effect of the weak periodic forcing.
20

The

parameter � represents the distance from the Hopf bifurca-

tion, �=�0−� f /2 is the detuning, 	 represents dispersion, 


FIG. 1. The largest m :n tongues observed in the spatially extended BZ

system. Each symbol type represents a different m :n response and a differ-

ent spatial pattern. The patterns �points� within the solid curves respond

subharmonically with the forcing frequency. The homogeneous oscillation

frequency is f0=0.020 Hz. The chemical conditions are given in Ref. 19.
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represents nonlinear frequency correction, and � represents

the forcing amplitude �proportional to ��. Exact forms for

these parameters have been derived for specific models such

as the Brusselator and the FHN models.
24,25

According to Eqs. �2� stable stationary solutions of the

amplitude equation �3� describe frequency-locked or reso-

nant oscillations. Uniform solutions of this kind exist for

���b, where
26

�b =
�� − �
�

�1 + 
2
. �4�

In the next two sections we show that nonuniform solutions

may restrict or extend the boundaries of resonant response.

IV. NONRESONANT FRONT DYNAMICS

A. The NIB bifurcation

Within the tongue boundaries, �b, of the 2:1 resonance,

front structures shifting the oscillation phase by � exist. We

use the forced CGL �FCGL� equation �3� to study the corre-

sponding front solutions. We recall that stationary solutions

of Eq. �3� correspond to resonant oscillations at � f /2. Reso-

nant oscillations are therefore destroyed when front dynam-

ics set in; the oscillation frequency at a given point changes

when a moving front is passing by. One mechanism which

induces front dynamics is the nonequilibrium Ising-Bloch

bifurcation. This is a pitchfork bifurcation in which a station-

ary “Ising front” loses stability to a pair of counterpropagat-

ing “Bloch fronts” as the forcing strength decreases below a

threshold �NIB. A NIB bifurcation diagram for Eq. �3� is

shown in Fig. 3. For the special case 	=
=0, the threshold

is given by
27

�NIB = ��2 + ��/3�2. �5�

Figure 4 shows the tongue boundaries of the 2:1 resonance,

calculated from Eq. �4�, and the NIB bifurcation threshold

�5�. The NIB threshold splits the 2:1 resonance tongue into

two parts, a Bloch part, �b
�
�NIB, and an Ising part, �

��NIB. When 	 is nonzero and positive �negative� the NIB

boundary ��=�NIB� shifts to the right �left� tongue boundary.

The NIB boundary for the FHN model is shown in Fig. 2.

In one space dimension, the NIB bifurcation threshold

designates a sharp transition from resonant stationary Ising

patterns at high forcing strengths, to nonresonant traveling

Bloch waves at low forcing strengths.
12,28

In two space di-

mensions the transition is not necessarily sharp; an interme-

diate range of turbulent dynamics can appear in the vicinity

of the NIB boundary when a transverse front instability de-

velops.

B. Bloch-front turbulence

Ising and Bloch fronts in bistable systems can go

through transverse front instabilities.
29

Far into the Ising re-

gime transverse instabilities often lead to stationary labyrin-

thine patterns through fingering and tip splitting. Close to the

FIG. 2. �Color online� The resonance tongue boundaries for the 2:1 response

of the periodically forced FHN equations �1�. The horizontal axis spans the

ratio of the forcing frequency � f to the Hopf frequency, �0�0.83, of the

unforced system. Within the tongue boundaries the system oscillates at ex-

actly half the forcing frequency. The green curve marked as �NIB is the NIB

boundary; above are stationary Ising patterns and below are traveling Bloch

wave patterns. The red circle marks the parameter values of standing waves

found outside the resonance tongue. The parameters in the FHN equations

are �=1, �=4.0, a1=0.5, a0=0.1.

FIG. 3. �Color online� The nonequilibrium Ising-Bloch �NIB� bifurcation

for the forced CGL equation �3�. For ���NIB there is a single stable Ising

front with zero speed. For �
�NIB the Ising front is unstable and there are

a pair of stable counterpropagating Bloch fronts. The insets show the shape

of Re�A� �solid blue curve� and Im�A� �dashed green curve� across the front

position. Parameters: �=1.0, �=0.01, 
=	=0.0.

FIG. 4. Resonance tongue diagram for the forced CGL equation �3�. Inside

the tongue-shaped region bounded by the solid lines �= ��� �for 
=0� uni-

form solutions are frequency-locked �resonant�. Above the dashed curve �
=�NIB resonant standing-wave patterns �stripes, labyrinths, and spots� are

found while below �NIB nonresonant Bloch-front spiral waves prevail.
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NIB bifurcation they may induce turbulent states involving

repeated events of spiral-vortex nucleation and annihilation

�hereafter Bloch-front turbulence or BFT�.8

In the context of forced oscillations, transverse instabili-

ties of Ising fronts have been studied both theoretically, using

Eq. �3� �Ref. 26�, and in experiments on the BZ reaction.
30

Figure 5�a� shows experimental results demonstrating a

transverse front instability. Figure 5�b� shows a numerical

demonstration of a transverse instability and the fingering

and tip splitting processes that lead to a resonant labyrinthine

pattern in the Ising regime far from the NIB bifurcation.

Another typical resonant behavior in this parameter regime is

the appearance of localized spot-like structures close to the

transverse instability threshold.
31,32

As the NIB bifurcation is approached the dynamics

change; instead of fingering and tip splitting; growing trans-

verse perturbations now induce vortex nucleation followed

by a nonresonant state of Bloch-front turbulence as Figs. 6

and 7 show. Far into the Bloch regime stable nonresonant

spiral waves prevail. Figures 8�a�–8�c� summarize the quali-

tative spatiotemporal behaviors as the NIB bifurcation is tra-

versed. For comparison we show in Figs. 8�d�–8�f� the cor-

responding behaviors in the absence of a transverse

instability. In that case the NIB bifurcation designates a sharp

transition between nonresonant traveling waves below �NIB

to resonant large domain patterns above �NIB. Approaching

the NIB bifurcation from below leads to a spiral wave with a

diverging pitch and vanishing rotation speed.

C. Kinematic equations for Bloch spirals
and vortex nucleation

Bloch spiral waves and spontaneous spiral-vortex nucle-

ation leading to BFT can be studied using a kinematic ap-

FIG. 5. �Color online� Formation of labyrinthine patterns by transverse front

instability. The interface between the two oscillation phases is transversely

unstable and small perturbations grow and finger. �Top� patterns from a

region of the BZ reactor, strobed at half the forcing frequency. Blue �yellow�
represents regions of low �high� Ru�III� concentration. �Bottom� patterns in

the CGL equation �3�. Blue and yellow regions are different phases sepa-

rated by �. Parameters: �=2.02, �=1, �=2.0, 	=0.5, 
=0.

FIG. 6. Spiral vortex nucleation in the BZ system. Frames �a�–�c� show the

phase of the oscillations at near half the driving frequency at three different

times t=100, 300, and 1700 s �Ref. 33�. Frames �d�–�f� show the position

of the vortices along the front at the corresponding times. �a� The initial

nearly planar front is unstable to transverse perturbations. �b� Vortices form

in pairs along the front. �c� Vortices eventually fill up the entire system. The

figures show a 19.1 mm�19.1 mm �200�200 pixel� region of the BZ sys-

tem with the light forcing intensity I=25 W/m2, uniform oscillation fre-

quency of f0=0.02 Hz, and forcing frequency of f f =0.06 Hz. Chemical con-

ditions are given in Ref. 34.

FIG. 7. Spiral-vortex nucleation and formation of Bloch-front turbulence in

a numerical solution of the CGL equation �3�. Frames �a�–�c� show the

phase arg�A� of the solution at three different times t=180, 800, and 8000.

Perturbations on the unstable front solution grow and pairs of vortices form

along the front. Frames �d�–�f� show the same data but with the vortices

shown as solid dots along the front. The front is defined as Re�A�=0 and the

vortex positions are where in addition Im�A�=0. Parameters used were �
=0.5, �=0.15, 	=0.3, 
=0, �=0.2 on a domain size of �x ,y�= �256,256�
with no-flux boundary conditions.
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proach for the dynamics of curved fronts. The normal form

equations for a curved front in the vicinity of the NIB bifur-

cation are
35

d�

dt
= − ��2 +

�2

�s2	Cn, �6a�

dC0

dt
= �anib − a�C0 − bC0

3 + c� + d
�2C0

�s2
, �6b�

where Cn, the normal front velocity, is related to C0, the

velocity of a planar front, through the relation, Cn=C0−D�,

s is the arclength, and d /dt is the total time derivative d /dt

=� /�t+ds /dt� /�s. The arclength changes in time, when the

front is curved and moving, according to ds /dt=
0
s�Cnds�.

Equations �6� capture the NIB bifurcation for a planar

front as the bifurcation parameter a crosses the threshold

anib; an Ising front solution, �C0 ,��= �0,0�, loses stability,

and two stable Bloch front solutions, �C0 ,��
= �±��anib−a� /b ,0�, appear. In the Bloch regime �a
anib�
Eqs. �6� admit a kink solution biasymptotic �as �s�→�� to the

two Bloch front solutions as Fig. 9�a� shows. In the two-

dimensional x−y plane this kink solution describes a rotating

spiral wave �Fig. 9�b��.
Figures 10 and 11 show the dynamics of a closed front

loop that contains a vortex pair in the Bloch regime �Fig. 10�
and in the Ising regime �Fig. 11�. The simulations were done

on a version of Eqs. �6� suitable for describing the dynamics

of closed loops.
36

In the Bloch regime the two vortices con-

verge to a pair of counter-rotating spiral waves, while in the

Ising regime mutual vortex annihilation leads to a circular

Ising front whose speed becomes vanishingly small as it ex-

pand outwards.

FIG. 8. Contrasting pattern formation phenomena in the CGL equation �3�
as the parameters are varied across the NIB bifurcation. Far below the NIB

threshold stable Bloch spirals prevail �panels �c� and �f��. As the forcing

amplitude is increased two scenarios are possible, depending on whether the

Bloch and Ising fronts are unstable �left column� or stable �right column� to

transverse perturbations. When a transverse front instability exists a state of

Bloch-front turbulence first appears �b�, followed by labyrinthine Ising pat-

terns �a�. When the fronts are transversely stable a sharp transition from

Bloch spirals to large-domain Ising patterns �d� takes place across the NIB

bifurcation, with the Bloch-spiral pitch increasing indefinitely as the NIB

threshold is approached �e�. Parameters: �=0.5, 	=0.35, 
=0, and �a� Ising

Labyrinth: �=0.38, �=0.4; �b� BFT: �=0.14, �=0.2; �c� Bloch spiral: �

=0.14, �=0.15; �d� Ising large domains: �=0.15, �=0.3; �e� Bloch spiral

near NIB: �=0.08, �=0.15; �f� Bloch spiral: �=0.14, �=0.15; the integra-

tion domain was �x ,y�= �256,256� and no-flux boundary conditions were

used.

FIG. 9. Spiral wave solution of the kinematic equations �6�. �a� The normal

front velocity C0 and curvature � have a kink solution biasymptotic to the

two Bloch fronts as the arclength �s�→�. �b� In the x−y �laboratory� coor-

dinate frame the kink solution is a spiral wave. Parameters: a=5.99, anib

=6.0, b=0.17, c=6.0.

FIG. 10. Formation of a pair of spiral waves in the Bloch regime. �a�
Solutions to the kinematic equations for closed loops �Ref. 36� at t=0 �bot-

tom�, t=2 �middle�, and t=4 �top�. The variable � is the ratio of the ar-

clength to the total loop length. �b� The corresponding solutions in the x

−y plane. Parameters: a=2.44, anib=3.33, b=0.09, c=4.56, d=0.0, D

=0.91.
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Equations �6� also imply that Bloch fronts close to the

NIB bifurcation are unstable to transverse perturbations pro-

vided c /D�0 �Ref. 37�. To see this we study the stability of

planar Bloch fronts to perturbations of the form

��C0 ,���exp��t+ iQs�+c.c. Inserting the perturbed forms

for C0 and � in Eqs. �6� gives the neutral stability ��=0�
relation

atr�Q� = anib −
c

2D
+ Q2. �7�

The first mode to grow is the zero mode, Q=0. Within the

range anib−c /2D
a
anib Bloch fronts are unstable to

transverse perturbations. As a approaches the NIB bifurca-

tion threshold, anib, modes with higher and higher wave

numbers grow. When the curvature perturbations produced

by these modes are sufficiently large, local transitions be-

tween the two Bloch fronts are induced and vortex nucle-

ation events take place
38

as demonstrated in Fig. 12.

V. RESONANCE INVASION

The NIB bifurcation is a mechanism by which resonant

standing-wave patterns destabilize to nonresonant traveling

waves. Figure 13 shows an experimental demonstration of an

opposite behavior where nonresonant traveling waves are

displaced by resonant standing-wave patterns. The mecha-

nism of this behavior is associated with the appearance of a

Turing mode
39

and has been studied by Yochelis et al.
26,40

Consider the dispersion relation associated with the zero

state of Eq. �3� �Ref. 30�,

� = � − k2 + ��2 − �� − 	k2�2. �8�

An examination of this relation reveals a codimension-two

point,

� = 0, � = �c = �/�1 + 	2, �9�

where the Hopf bifurcation to uniform oscillations coincides

with a Turing instability,
30

as Fig. 14 shows. The Hopf fre-

quency and the Turing wave number are given by �0

FIG. 11. Formation of an expanding circular loop in the Ising regime. �a�
Solutions to the kinematic for closed loops �Ref. 36� at t=0 �bottom�, t=3

�middle�, and t=15 �top�. �b� The corresponding solutions in the x−y plane.

Parameters: a=4.87, anib=3.33, b=0.36, c=2.28, d=0.72, D=0.91.

FIG. 12. Nucleation of a spiral-vortex pair in the kinematic equations �6�.
�a�,�d� A small perturbation in the curvature grows. �b�,�e� A portion of the

domain reverses direction and a spiral-vortex pair nucleates along the front.

�c�,�f� A pair of rotating spiral waves forms. Parameters: a=5.97, anib=6.0,

b=0.165, c=6.03.

FIG. 13. �Color online� Resonant standing waves invading nonresonant qua-

siperiodic oscillations. �Top� patterns from a region of the BZ reactor,

strobed at half the forcing frequency. Blue �yellow� represents regions of

low �high� Ru�III� concentration. �Bottom� patterns in the FCGL equation

�3�. Blue and yellow regions are different phases separated by �. Param-

eters: �=1.98, �=1, �=2.0, 	=0.5, 
=0.
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=�	 /� and k0
2=�	 /�2, respectively, where �=�1+	2. In the

vicinity of the codimension-two point, where ��−�c���

��c, solutions of Eq. �3� can be approximated as

�Re A

Im A
	 = �e0B0ei�0t + ekBke

ik0x + c.c.
 + ¯ , �10�

where the complex amplitudes B0��t� and Bk��t� in Eq. �10�
are of order ��, and describe slow uniform modulations of

the �relatively� fast oscillations associated with the Hopf

mode and of the fast spatial variations associated with the

Turing mode. We refer the reader to Yochelis et al.
26

for the

derivation of the normal form equations for the amplitudes

B0 and Bk, the so-called Hopf-Turing amplitude equations.

These equations have been studied in various contexts
41–47

and are known to have a parameter regime where stable uni-

form oscillations coexist with a stable Turing pattern.

In the present context, the uniform oscillations states

pertain to nonresonant quasiperiodic oscillations, whereas

the Turing-pattern state describes resonant standing waves.

The range of bistability occurs outside the 2:1 resonance

tongue and is bounded on one side by the tongue boundary.

Moreover, close to the tongue boundary the Turing-pattern

state invades the uniform-oscillations state as shown in Fig.

13�b�. These findings explain the experimental observations

shown in Fig. 13�a�. Indeed, the displacement of traveling-

wave state by the resonant standing-wave state has been ob-

served in the vicinity of the tongue boundary.

The phenomenon of resonance invasion presented above

has been predicted using an amplitude equation approach

�Eq. �3�� �Refs. 26 and 30�. To test this prediction we studied

resonance invasion in the FHN model �1�. Figure 15 �top�
shows snapshots of a standing-wave pattern invading uni-

form oscillations outside the tongue boundary �parameters at

solid circle in Fig. 2�. Typical time series in the standing-

wave and uniform-oscillations domains are shown in the

middle part of Fig. 15, and the corresponding power spectra

in the bottom part. While the uniform oscillations are quasi-

periodic and unlocked to the forcing, the standing waves are

clearly resonant, locked to half the forcing frequency.

VI. CONCLUSION

We described here joint theoretical and experimental

studies of pattern formation mechanisms that affect the reso-

nant response of oscillatory systems to periodic forcing. We

focused on the 2:1 resonance case and highlighted two

mechanisms. The first is associated with the NIB front bifur-

cation within the resonance tongue of uniform oscillations.

The bifurcation restricts the range of resonant nonuniform

FIG. 14. The growth rate �real part of �� of perturbations from the A=0

state of Eq. �3� at the codimension-two point, �=0, �=�c. Two modes

become marginal at this point, a Hopf zero-k mode and a Turing finite-k

mode. Parameters: �=0, �=2.0, 	=0.5, �=�c�1.8.

FIG. 15. A resonant pattern invading an unlocked oscillatory state in the

forced FHN model �1�. The parameters correspond to the point indicated by

the solid circle on the tongue diagram in Fig. 2 �� f =1.3, �=0.4�. �Top� two

snapshots in time of the pattern phase. The left half of the domain is reso-

nant and the right half is unlocked with uniform oscillations. �Middle� time

series for the two points shown in the top figure. The time series for the

point at the black circle is not locked to the forcing �shown in the small sine

wave�. The time series at the red square is locked to the forcing and shows

one full wavelength response for every two forcing wavelengths. �Bottom�
the power spectra of the two time series showing that the resonant part of

the pattern is locked to 1/2 the forcing frequency as indicated by the vertical

line.

037113-7 Resonant patterns Chaos 16, 037113 �2006�



oscillations to the Ising regime where phase fronts are sta-

tionary. The NIB bifurcation designates a sharp transition

from nonresonant traveling waves to resonant standing

waves when the phase fronts are transversely stable. In the

presence of a transverse front instability, an intermediate

range of Bloch-front turbulence further restricts the range of

resonant oscillations. A second mechanism affecting resonant

response is associated with the appearance of a finite-wave

number or Turing-like instability of the zero state. The insta-

bility is induced by the periodic forcing and can lead to the

coexistence of stable nonresonant oscillations with stable

resonant standing waves. Invasion of the latter state into the

former leads to resonant response outside the Arnold tongue

boundaries of uniform oscillations.

Equivalent mechanisms may work in other resonance

tongues. Theoretical studies of the 4:1 resonance,
22,23

for ex-

ample, revealed a front instability that designates a transition

from resonant two-phase standing waves at high forcing

strengths to nonresonant four-phase traveling waves at low

forcing strengths. Like the NIB bifurcation, this front insta-

bility restricts the parameter range of nonuniform resonant

oscillations within the 4:1 tongue.
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