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We show theoretically that competing optical nonlinearities in a semiconductor étalon, with trans-
verse effects included, result in complex spatiotemporal behavior. A theoretical framework is devel-
oped that explains many features of the oscillatory behavior. Numerical simulations exhibit kinks,
switching waves, whole-beam, and edge oscillations. Simulations compare favorably with recent

experiments.
PACS number(s): 42.65.—k

I. INTRODUCTION

Coupled nonlinear reaction-diffusion systems offer
much scope for complex spatiotemporal behavior. One
such system is the semiconductor Fabry-Pérot étalon
having a refractive index dependent on photoexcited car-
rier density and temperature. These devices have at-
tracted much interest due to potential applications to
the fields of telecommunications and optical computing.
Recent experiments in InSb devices have revealed com-
plex oscillatory behavior of a reflected beam [1], posing
intriguing questions about the nature and form of the os-
cillations. Furthermore, there has been no direct experi-
mental evidence of transverse effects in the coupled InSb
system, although these must play a crucial role in the dy-
namics of oscillations. To date theoretical considerations
have concentrated on plane-wave approaches, which do
not include spatial effects and hence are inadequate in
describing oscillatory behavior.

We propose a theoretical technique that is useful in
explaining features of spatiotemporal behavior in certain
reaction-diffusion systems. We believe that this tech-
nique is quite general and can be applied to explore dif-
ferent processes in two-component reaction-diffusion sys-
tems. Here we apply this technique to the model of an
InSb interferometer with competing nonlinearities. In
such a two-component system there are three important
length scales: namely, the two characteristic diffusion
lengths and the minimum modulation length of the in-
homogeneous parameters. The technique requires that
one diffusion length be much smaller than the other dif-
fusion length and the modulation length of the inhomo-
geneous parameters. Then at any instant and for each
spatial point it is possible to treat the other component
and the inhomogeneous parameters as fixed parameters
of the equation with the smallest diffusion length. If
in addition the characteristic decay time of the variable
with the shortest diffusion length is much smaller than
the other decay time, then a further simplification occurs.
Then the dynamics of the fast variable can be considered
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independently of the slow variables, as these do not have
time to respond to changes in the fast variable. It is then
possible to predict local dynamic behavior from a known
state of the complete system. These conditions are met
in the InSb system if the spot size of the incident beam
is large compared to the carrier diffusion length.

We apply the technique and gain useful insight into
features of the oscillatory behavior and particularly con-

. centrate on transverse effects. We simulate the system

numerically in one transverse direction and show how
kink solutions, whole-beam oscillations, and pulse effects
evolve. Furthermore, we find that the edges of the carrier
profile may lose stability and oscillate at a much higher
frequency than expected, considering the thermal relax-
ation time of the system.

The paper is organized as follows. The InSb Fabry-
Pérot system is introduced and the model explained. We
review previous results on kink solutions and regenera-
tive oscillations that are essential for the understanding
of the graphical technique. This technique is then ex-
plained using examples from numerical solution of the
full dynamical system. Finally we consider the response
to pulse inputs (“single-shot regime”) and edge oscilla-
tions.. . _. __

II. MODEL EQUATIONS
FOR THE FABRY-PEROT RESONATOR

In this section we introduce the equations (proposed
in [2]}) which we will use to describe the processes in
a nonlinear Fabry-Pérot resonator. The InSb étalon is
mounted on a heat sink and illuminated by a laser beam
of wavelength A. The optical properties of the étalon are
governed by the dependence of the refractive index on
photoexcited carrier density (N) and temperature (T')
through

n(N,T) = no(T,) — ox N + op(T — T), @)

where o and o are positive constants. Since the radia-
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tion is not significantly absorbed in the cavity we assume
that it is possible to average N over the length of the
cavity. Then neglecting diffraction and restricting dif-
fusion to one transverse direction we obtain the follow-
ing reaction-diffusion system for the photoexcited carrier
density and temperature:

ON al (N, T,z) B N 82N
- R P (22)
0T Q(N,Tyz) T-Tp o*r
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where
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is the cavity irradiance. The étalon is of length [ and mir-
ror reflectivities Ry (front), and Ry (back). The finesse
factor F' = 4R (1 — Ro) ™2, where R, = (R;Rp)Y/%e %,
The intensity absorption coefficient may depend on tem-
perature through

oT) = ap exp (T BT“> .

@)
Both carriers and heat diffuse in the z direction with dif-
fusion coeflicients D and «, respectively. Ty is the carrier
recombination time and is independent of NV since we as-
sume trap recombination as the dominant recombination
mechanism (at Tp =77 K). Q(N,T) represents the heat
generated per unit volume and may be from two sources.
First there is nonradiative carrier recombination, which
yields

QN T) = w . (5)

[Note that Egs. (1)~(5) are in the form proposed, in [2].]
Second there could be absorption of radiation at the back
mirror since some experiments utilize a gold reflecting
layer to provide extra reflectivity. We could then assume
a contribution of the form

~ aeﬁ‘It (N y T)

Q(N 3 T) ~ _"Ei——: (6)
where I, is the “transmitted” irradiance and a.g takes
account of any heating outside the étalon. This form of
heat source has been shown to lead to oscillatory behavior
in the plane-wave limit [3].

In Eq. (2b), we neglected the dependence of the lat-
tice temperature on the coordinate z along the beam
direction. This is an acceptable approximation if the
InSb layer is in contact with a perfect heat sink through
a thin thermal resistance [4], as is indeed the case ex-
perimentally. Then we may replace the term describing
thermal diffusion in 2 (k82T/82%) with the decay term
—(T —To)/rr used in (2b). 77 plays the role of a ther-
mal relaxation time and defines a corresponding diffusion
length Iy = \/k77. This approximation leads to the fol-
lowing consequences:
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TABLE I. Experimental parameters.

Quantity Value or range Units
To 77-85 K
ToyTo 7 K
oN 1.6-5.0x107*8 cm®
or 6x10™* K™
™ 300-600 ns
T 70-500 ms
A 5.43-5.71 pm
l 100-500 pm
Ry 0.36-0.5
R, 0.36-0.95
ap 2-80 cm™!
Cleff 0-1
D 10 em?/s
K 0.01-0.1 cm?/s
C 0.096 J/gK
p 58 g/cm®
w 200 pm
é 0-30 K

(i) Absorption at the back mirror must be treated as a
heat source averaged over the cavity. This is a reasonable
assumption if the length of the étalon is short compared
to the characteristic thermal length.

(ii) Carrier recombination at the surfaces of the InSb
is neglected. This effect could be included by adding a
factor multiplying the incident irradiance in (2a) [5, 6].

As we intend to concentrate on transverse processes the
precise forms of the source and sink terms are not impor-
tant, as this is unlikely to affect the qualitative behavior
of the system as a whole.

Even with the approximations noted above, this sys-
tem is still too complex to treat analytically and also dif-
ficult to simulate numerically because of the large ratio
of reaction rates (77/7x ~ 10%). In the following sections
any numerical simulations are of the full system (2a) and
(2b) assuming heating due to (bulk) carrier recombina-
tion only. References to a Gaussian input assume the
profile

Iin(z) = Iy exp(—2®/w?), (")

where I is the peak irradiance and w the spot size. Typi-
cal experimental parameters are tabulated in Table I and
we will use these parameters throughout. In the experi-
ments performed to date there are many parameters that
are not known precisely. In particular, the heat sources
have not been quantified. Therefore we do not attempt
quantitative agreement with experiments. We assume
that the system will behave similarly in two transverse
dimensions although the effective diffusion rate will be
different.

III. THEORETICAL AND NUMERICAL
TREATMENT

Before considering the complex spatiotemporal behav-
ior of the InSb system we will present some previous re-
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sults. Having presented the theoretical framework re-
quired we will build upon this to propose a technique for
explaining the complex behavior of the system. ,

We begin by considering the one-component bistable
system, which evolves according to

Uy = f(’ll,, A), (8)

where f depends on both u and the set of parameters .
There may be any number of roots of (8) satisfying the
steady-state condition

f(u, X) =0. (9)

A common realization of f is the S shaped curve obtained
by plotting the solution of Eq. (9) against one of the
parameters (A1, say). An example is given in Fig. 1(a)
where the system is bistable in the range A¢ < A\; < AJ.
A1 is typically an external parameter — for example, the
incident irradiance in an optically bistable system. In
the bistable region the state depends on previous history
(this leads to the well-known hysteresis effect [7]). This
property may be used to provide memory functionality
in a single device. Another feature of these systems is
that near the critical points (A¢,A}) there is very slow
response. This is known as eritical slowing down and
is a limitation in marginal switching situations. In two-

AL AL° A,

(b)

x

FIG. 1. (a) An S-shaped curve for g(u,\ ) = 0 showing
bistability in the range A\ < A1 < A}. Two states are in-
dicated within the bistable region. (b) Spatial kink solution
between the two states depicted in (a).

component systems this is not such an important effect.
Inclusion of diffusion gives the equation

%y
9z’
where D, is the diffusion coefficient of the species wu.
Equation (10) has a nonhomogeneous solution even if A

and D, are homogeneous. This separatrix solution has
the following properties:

us = f(u,A) + D, (10)

lim u=u", lim u=u",
z——+00 T——00
Ou du 0
——— T= e = 3
Oz T=—00 Oz =400

where u~ and u™ are the two stable zeroes of (9) cor-
responding to A in the bistable region [Fig. 1(a)]. The
two states are joined by a region of approximate width
v D, as shown in Fig. 1(b). This kink solution is in-
dependent of transverse coordinate and hence will move
with constant velocity. Assuming a solution of the form
u(z — Vt) = u(¢) yields
ut
/ Fd, A)du'
V= (11)

oo fau\2
[ (&)«
~co \d(
Of particular interest is the case when the kink is sta-
tionary, which requires '

| /i F N =0, (12)

For simple forms of f the velocity can be found analyti-
cally but in general numerical methods have to be used.
Another approach is to recast (8) in the form typical of

a system moving in a conservative field:

R T =—%gﬁ ' (13)
where
U= - / Flu, \du (14)

is the -poteﬁt'i“al. The velocity is then a function of the

~difference in potentials — the system moves to the most
_ favorable state (lowest potential). When the potentials
_ of the two states are equal the kink is stationary.

One-dimensional systems have been studied theoreti-
cally and experimentally using the above approaches (see,

- for example, references in Fife [7].) Harding and Ross [8]

have experimentally investigated the dynamics of kink
solutions in a ZnSe system with a thermal nonlinearity.

—..The next step in complexity is to consider a coupled

reaction system:
Uy = f(u1 v, A)y
(15)

vy = g(u,v, A).



The state of the system evolves in the phase space (u, v)

and a convenient approach is the use of nullcline dia-

grams. The nullclines
fu,v,A)=0 and g(u,v,A)=0

may be plotted in the u, v plane and an example is shown
in Fig. 2, which shows one f and two g corresponding to
different parameters. Intersections of the f and g null-
clines correspond to steady-state solutions of both sub-
systems and hence of the complete system (15). In the
example shown the system is in the bistable regime for
the solid g nullcline and there are three steady-state so-
lutions, two stable and one unstable. Local evolution of
a state can be inferred in the following way. On each side
of the curves f =0 and g = 0 the sign of the derivatives
du/dt and dv/dt changes. Hence u and v will increase
or decrease depending on where the current state of the
system is in relation to the nullclines. In some parameter
regions there may be no stable states and this is indeed
the case for the dotted g nullcline in Fig. 2, the result
being that the system oscillates. In general the path in
phase space is not easy to predict [9]. However, when
one subsystem reacts much faster than the other (as in
the InSb interferometer), the system will trace a path
close to the N nullcline under the influence of any (slow)
changes in T'. In some parameter ranges a reduction in
the slow variable may pull the state off the N nullcline
and it will jump very quickly to the next available N
state. An example is shown in Fig. 3, where there is fast
initial movement from S to the N-nullcline. This is fol-
lowed by a slow reduction in temperature until at point 4
the stability is lost causing a jump to state B, which oc-
curs in a time of the order of the carrier relaxation time.
Point B is below the T" nullcline and hence the tempera-
ture will slowly rise and the state follows the N nullcline
towards point C. At point C there is a jump to point D
and the process repeats. These regenerative oscillations
have been proposed [10] and studied theoretically and ex-
perimentally [11, 12] in optically bistable semiconductor
systems. In most cases the plane-wave (homogeneous)
description is used and in some cases the fast subsystem

u
FIG. 2. The nullclines f(u,v, A) = 0 and g(u,v,A) = 0.
For the solid g nullcline there are two stable and one unsta-
ble state. For the dotted g nullcline the stationary state is
unstable and the system oscillates.
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[ D c

Temperature T'

Concentration N

FIG. 3. The result of a numerical simulation overlayed
on the nullcline figure. From the initial point S the system
settles into an oscillatory motion.

is eliminated adiabatically. This is appropriate as long
as the transverse effects may be neglected.

Now consider a two-component homogeneous reaction-
diffusion system:

o%u
Ut = f(u,v,)\) +Dua—'x'2'7
(16)
0%
vy = g(u,v,)\) -+ Dv@.

In the bistable region the nullclines can be as shown in
Fig. 4(a). As before—for a kink solution—we assume a,
state A = (N,,T,) at z = —oo and B = (N, Tp) at
z = +400. It has been shown that either one or three
traveling-wave solutions exist, depending on the ratio of
characteristic velocities of the two subsystems {13, 14].
In a system with a large difference in reaction rates it is
possible to decouple the equations and assume that the
kink in the fast variable is only under the influence of
the (local) state of the slow variable. To show this, a
numerical simulation of the InSb system was performed
with parameters corresponding to Fig. 4(a). The input
intensity was constant in time and space and the ini-
tial profile set to (N,T) = (N,,T,) for z < 50lx and
(N,T) = (Ny,Tp) for z > 50ly. The results are shown

_in Fig. 4(b) where each carrier profile is separated by

At = 107y. Note that a kink forms between the values
N, and N,. This moves rapidly and is almost unaffected
by the very small change in temperature. On a much
longer time scale the temperature decreases (z > 50lx)
and N reduces accordingly, following the nullcline from
C to A. The important consequence is that the N kink
can be considered as a one-component solution between
Ny and N, (or N, and N,), treating the temperature
as a fixed parameter. Experiments are underway to ex-
amine these effects, although no convincing results have
appeared.

Finally we consider the analysis of Nishiura and
Mimura [15], who investigated a homogeneous reaction-

diffusion system recast into the form
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62
etuy = f(u,v) + 525:3-—1;,
(17
8%
Vg =g(u,’u) + 5:0_2:

under the assumption that u reacts much faster but dif-
fuses to a lesser extent than v. Nontrivial layer solutions
are possible in such a system for sufficiently small 7 [16].
As 7 is reduced further, the system may undergo a Hopf
bifurcation and the edges of the layers become unstable
and oscillate. The amplitude of oscillation increases as
7 is reduced further. The bifurcation parameter is the
ratio of characteristic velocities of the two subsystems:

Vo _ lv/Tv (18)

T=— ,
lu/Tu

where [ and 7 are characteristic diffusion lengths and
relaxation times, respectively. This parameter has been
linked to the appearance of multiple moving structures in
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FIG. 4. (a) Nullclines showing the position of the states
defining the kink solutions in (b). (b) Evolution of carrier
density as a function of time showing development of kink
solution. Each curve is separated by At = 107y.
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coupled reaction-diffusion systems [17] and later the link
was proved numerically and by the singular perturbation
approach [13]. Note also that as suggested by Kalafati,
Serbinov, and Ryabova [17] 7 also controls the number of
traveling-wave solutions. For large 7 [O(1)] there is only
one solution and as 7 is reduced, the system bifurcates
and exhibits at least three solutions, one being unstable
[14].

‘We have now considered the relevant effects that have
been predicted or observed in homogeneous systems and
will extend to consider an inhomogeneous system—the
InSb system illuminated by a Gaussian beam. This will
modify the behavior and in particular will limit the ex-
tent of any kink or layer solutions.

A. Whole-beam oscillations

Oscillations in the reflected power from an InSb
bistable étalon have been observed experimentally [18]
and described theoretically using a plane-wave approach
[11]. Unfortunately there has been no direct measure-
ment of the transverse dynamics of the oscillations. As
a first attempt at describing the oscillations for a Gaus-
sian input in one transverse coordinate we can consider

—-~—the nullcline curves that predict behavior in the plane

wave (Fig. 5). The path superimposed on the figure cor-
responds to the center of the beam and was obtained
—numerically. However, we find that the plane-wave ap-
proach does not give any valuable information about
the behavior of the extended system. Indeed, when the
plane-wave system has an oscillatory solution, the oscil-
lations for a Gaussian beam with sufficiently small spot
size are prevented by thermal diffusion in the transverse
direction. Similarly, when the plane-wave approach pre-
dicts monostability (or bistability), the one-dimensional
system may oscillate, as we will see later.
Now we will formulate a technique that takes into con-
sideration the change in the spatial properties of the sys-

——78.75
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7725+
T 770 T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

Concentration N (10 cm®)

FIG. 5. An example of an oscillation in a Gaussian beam
where the state in the center of the beam is plotted in phase
space along with the nullclines. Note that the nullcline ap-
proach predicts the existence of one stable state.
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FIG. 6. Evolution of (a) central carrier density, (b) tem-
perature (at the beam center), and (c) reflected power show-
ing whole-beam oscillations. Parameters: A = 5.618 um,
D = 10 em?®/s, k¥ = 0.01 ecm?/s, Rf = Ry, = 0.5, detun-
ing=1.45142, To = 77K, on = 110" cm™2, or = 6x 1074
em™3, v = 0.6 ps, 7r = 30 ms, ap = 2.4 em™!, 6 =30 K,
Io = 3.5 W/cm?, w = 60ly.

tem (intensity of the beam) and allows an adequate de-
scription of the oscillation process in an inhomogeneous
medium.

First consider the features of the whole-beam oscilla~
tions found numerically. In Fig. 6 the evolution of central
N, T and reflected power is shown and oscillations are ev-
ident. Figure 7(a) is a contour plot of carrier density as
a function of z and time. Similarly, Fig. 7(b) shows the
evolution of the temperature. As the time ¢ = ¢, is ap-
proached the system is in the “lower” N state and is cool-
ing. At t =t, the center of the carrier profile switches to
the upper state and the switched-up region rapidly ex-
pands. The carrier profiles around the switch-up point
are shown in Fig. 8(a), where each profile is separated by
a time of 41.677x. During the switch process the tem-
perature changes by less than 0.01%. The region of high
carrier density adds extra heat due to carrier recombi-
nation and hence the temperature rises. As the temper-
ature increases the switched-up region contracts until it
finally collapses at ¢t = t; [Fig. 8(b)]. After collapse the
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-
Q
E
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1 T T 1
0 50 100 150 200
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0.2072-
0.1813~] @
@ 0.1554
(0]
£
l,_
0.1295-]
0.1036—] (b)
T

T 1
0 50 100 150 200
Coordinate x (ly)

FIG. 7. Contour plot of (a) carrier density and (b) tem-
perature as a function of position and time showing whole-
beam oscillations.
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heat source is reduced, the temperature decreases, and

the whole process repeats.

B. I-T representation

It has already been demonstrated that because of the
disparity in the time constants of the InSb system it is

possible to neglect temporal variations in temperature
while fast transverse motion of carrier density occurs. In
addition to this the thermal length is much greater than
both the likely variations in N(z) and the spot size w.
This allows us to consider kinks in carrier density as “ho-
mogeneous” ones. We therefore treat the N subsystem
independently and may consider the local temperature
as a fixed parameter. For any point (zo, say) on the
beam we can draw the N nullcline as shown in Fig. 9.
If the temperature at zg is known, then in the vicinity
of £y we can see if the system is stable or bistable in
N. For T > T, and T < T there is only one stable
state. For T} < T < T, the system is bistable and the

4
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FIG. 8. Profiles of carrier density variation with z showing
the (a) switch-on and (b) switch-off section of whole-beam
oscillations. Each curve is separated by At = 41.677.
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FIG. 9. N nulicline corresponding to one particular point
in a beam. If the temperature lies between T; and Ty, then

the system is bistable in N. Outside this range only one state
is possible.

state depends on the history or any spatial effects. In
Fig. 10(a), T; and T, are graphed against the intensity
[I(zo) = Iyexp(—z¢%/w?)]. Choosing another point on
“the beam (z;) yields a new T} and T}, and these may
be plotted on the same diagram at the new intensity
I(z1). Extending to all points on the beam yields the

Temperature T'

Intensity  I(a,) I

Temperature T

(b)

Intensity I
FIG. 10. (a) From an initial point (zo) on the beam, 7}
and T, define the region of bistability. Extending to all spatial
points yields the solid curves. (b) The beam curve through

A and B passes through the bistable region bounded by the
curves T; and Ty,.
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solid curves which bound the region of bistability. Note
that the diagram indicates stability in N as a function of
local intensity and temperature under the assumptions
made above. For all points below the lower curve (like
B) there is only one possible state—the upper N state.
For points inside the bistable region (like A) the system
is bistable and hence either N state is possible. (Note
that we are defining the state at each point in terms of
slowly varying T and I and hence N is only allowed to
take upper or lower bistable values. Of course these val-
ues depend on the local temperature and intensity.) Any
particular solution may be plotted on the I-T' diagram
since the temperature at each spatial point is related to
the irradiance through the coordinate . We will refer
to this curve as the beam curve in further discussions. If
T € [Tq,Tp), then for a Gaussian input the beam curve
starts at (I(z.),T(z,)), reaches I = I;, and ends at
(I(zb), T(2s))-

In Fig. 10(b) the curve T'(I(z)) has been added, which
represents a solution where at point B the upper N state
is realized. The system is in the lower N state at point
A and hence there must be a stationary kink between
A and B. The position of the kink may be found by
adding a curve corresponding to the set of temperatures
that gives a stationary (zero-velocity) N kink between
the upper and lower N states at each intensity. This
curve has been added to Fig. 11. The position of the
kink corresponds to the intersection of the zero-velocity
curve and the beam curve (at point Z). Any kink to
the left or right of Z will move quickly to the point of
intersection.

Having introduced the I-T' representation we can now
apply this to consider the details of whole-beam oscilla-
tions.

79.0- -
N
78.5—
<
B~ 78,0
o
=
o
a
% 77.5-
l_
77.0-
76.5 T T T T 1
26 28 3.0 32 34 36
Intensity J (W cm™)
FIG. 11. An example where the beam is switched on

where it descends below T; and is off outside the bistable
region where the temperature is low. The position of the
kink is given by the intersection of the beam curve and the
zero-velocity curve at Z.
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1. Whole-beam oscillations

Results from numerical simulation of whole-beam os-
cillations were shown in Figs. 6-7. We now reconsider
this process in the framework of the I-T representation.
The coupled system is simulated numerically for a wide
Gaussian input beam of spot size w = 60ly. The solution
evolves from the homogeneous initial condition N = 0
and T'= 77 K at t = 0. Once the oscillations have settled
down we choose various points in time and reconstruct
the beam curves from the T'(z) and I(z) profiles. The
parameters used are given in the caption for Fig. 6.

At t = ¢, all points on the beam are in the lower N
state. In the I-T" plane the beam curve corresponds to
the curve labeled 1 in Fig. 12(a), where t is somewhat less
than t,. (Note that in this instance the beam curve in
fact represents both sides of the temperature profile be-
cause of the symmetry in the solution about the center of
the Gaussian beam.) At this moment the temperature is
slowly decreasing and hence the beam curve moves down-
wards. A critical moment occurs when the beam curve
(curve 2) cuts the curve bounding the bistable region. At
this moment the only possible state in the center of the
beam (I = Ip) is the high-N state. Hence the carrier pro-
file switches up in the center. Kinks rapidly develop and
move outwards. The velocity of the kinks depends on lo-
cal irradiance and temperature. (This process occurs on
the N time scale and hence we may neglect any tempo-
ral change in temperature while the kinks are in motion.)
Both kinks stop at point Z, where I = I, = I(z,) fixes
the position of the kink. Once the high-N state appears
the extra heat source (carrier recombination) causes an
increase in temperature. This heating occurs mainly in
the center of the beam (to the right of point Z), although
heat is of course spread by diffusion. Hence the beam
curve moves upwards, increasing more rapidly to the
right of Z. This gives rise to the set of curves 3,4,5,... in
Fig. 12(b). The interface between N states (at Z) moves
to higher intensities and subsequently the switched-up
region is contracting on the thermal time scale. When a
portion of the beam curve crosses the zero-velocity curve
the upper-N state collapses [Fig. 12(c)]. Alternatively,
for very wide beams the kinks intersect at point B cor-
responding to the center of the beam. This collision ap-
pears to result in the collapse of the upper state. (Note
that there are other possibilities if the beam is not Gaus-
sian.) After collapse the system cools due to the drop in
carrier recombination. Eventually the temperature drops
to a level where the process repeats again.

In Fig. 13 we show a range of beam curves during the
oscillation, showing how the oscillation is indeed bounded
by the bistable region and zero-velocity curves. The
switch-on does indeed occur at point A and similarly the
switch-off when there is no longer a point of intersection
with the zero-velocity line. The point Z also accurately
gives the position of the edges of the switched-up region
following initial expansion. Note that it is possible for the
beam curve to fall below A since thermal diffusion may
prevent an immediate temperature rise as the upper-N
state appears.

The above considerations of the numerically obtained
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FIG. 13. An example of a set of beam curves during a
-—whole-beam oscillation.
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solution illustrate how the I-T" representation can be used
to describe whole-beam oscillation. The proposed tech-
nique allows the determination of the parameters where
the high-NN state appears and collapses, and an explana-
tion of the transverse switching dynamics. Furthermore,
as we will explain, plotting the steady beam curve in the
I-T plane we can determine how to change the parame-
ters to obtain oscillations.

For example, consider the isocline and I-T° curves
shown in Figs. 14(a) and 14(b), where the solution is
stable and the carrier profile is switched up in the center.

- The incident beam is Gaussian with w = 22ly. First
note that the isocline representation does not predict os-
cillations. We can see from the I-T curves that the tem-

___ berature must be increased to facilitate the switch-off.
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FIG. 12. Beam curve movement during oscillations: (a)
The temperature is decreasing here and the beam curve moves
downwards. When position (2) is reached, the center of the
beam switches up since only the upper N state is accessible.
(b) The temperature is increasing and the beam curve rises.
(c) In this example the beam curve crosses the zero-velocity
curve and the upper state collapses.

~In general it is very difficult to see how the parameters
could be changed to achieve this. Merely increasing the
incident irradiance may not help; the beam curve would

.._be extended to the right and an even higher tempera-
~“““ture rise would be required. We will choose one param-

eter (the spot size) and change this to see what hap-
pens. Direct prediction of the result is not possible due
to the complexity of the system and the disparate diffu-
sion lengths. However, we may perform the simulation
again with the altered parameter and see how the steady
beam curve alters. Increasing the spot size to w = 4515
yields Figs. 14(c) and 14(d). Now the temperature is al-
most high enough, and only a small change is needed to
induce the switch-off. If the spot size is increased fur-
- ther, then oscillations are obtained. It is possible that
a change would yield a switched-off steady state rather
than an oscillatory one. In that case the same process
may be used to find parameters to give the switch-on and
therefore continuous oscillations. We could have chosen
any parameter and used the same procedure. The iso-
clines’ representation is unhelpful in this case since they
change with intensity and do not directly yield the switch
points.
We have checked the validity of the I-T' description in
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FIG. 14. (a) Center of beam superimposed on isoclines. (b) I-T representation corresponding to (a). For (c) and (d) the

parameters are the same except for a larger spot size.

the limit when the carrier diffusion length is much less
than the characteristic thermal diffusion length and the
spot size. It is worth noting that as the spot size (or
the thermal length Ir) decreases, the approximation of
infinitely narrow kink widths will break down. In this
limit the I-T' technique fails to yield an adequate quan-
titative description of the oscillations. For example, it
does not predict the correct position of the kinks. Nev-
ertheless, the qualitative behavior remains the same.

The system can be modeled by solving the thermal
diffusion equation and defining the carrier density from
the method above. This would be very fast compared to
solving the complete system and only loses information
about the (fast) switch-on process.

2. Single-shot regime

The I-T allows the prediction of suitable conditions for
the appearance of the “single-shot” regime for the Gaus-
sian beam. This was possibly observed experimentally
by Grigor'yants [1] following an earlier consideration in
the plane-wave limit [19]. In this regime a small tran-
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FIG. 15. Single-shot response. From the initial position
(A) a drop in intensity produces B-C. Restoration of in-
tensity yields position D and cooling eventually leads to a
switch-on at E.
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sient pulse (or drop) in intensity may yield a large output
pulse, typically of much greater duration. In Fig. 15 the

initial profile (A) has a central switched-up region with

kinks at Z. A reduction in intensity moves all points on
the beam curve to lower intensities (curve B), which is
completely above the zero-velocity line. The upper state
must collapse and this happens on the carrier time scale.
Following collapse the system cools and the beam curves
move downwards: B — C. When the intensity is re-
stored the beam curve switches to D while still cooling
towards E, where once 7] is reached, the upper state will
appear. The pulse duration may be quite short since the
switch-off is very rapid. A similar process occurs for a
sudden increase in irradiance.

8. Edge oscillations

The numerical simulations have revealed that the edges
of the switched-on region (corresponding to the high-N
state) may lose their stability and start to oscillate. The
frequency of these oscillations is much higher than that
of the whole-beam oscillations described in the previous
sections. When the whole-beam oscillations also exist,
the pulsations of the edges develop soon after the ap-
pearance of the upper state, their amplitude increases
and they disappear with the collapse of the upper state
(Fig. 16).

In cases when the whole-beam oscillation does not oc-
cur we have observed both symmetric and antisymmetric
pulsations of the edges. An example of edge oscillations
with no associated whole-beam oscillations is given in
Fig. 17(a). We defer for a planned forthcoming publi-
cation a more extensive examination of the edge oscilla~
tions. We will, however, note that this phenomenon cor-
responds to almost tangential orientations of the beam
curve to the zero-velocity curve in the I-T' representa-
tion [Fig. 17(b)]. Hence the position of the kinks is very
sensitive to the temperature. Note that the beam curve
does not quite intersect the zero-velocity curve; this is

Time t

Coordinate x

FIG. 16. Contour plot of carrier concentration evolving in
time as a function of z. The central portion switches up and
the edges lose stability producing oscillations.
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probably due to our assumptions of infinitesimally small
kink width.

It could be that both whole-beam and edge oscillations
are manifestations of layer oscillations [16] under the con-
straints of the inhomogeneous input profile. The possi-
bility of high-frequency edge oscillations in this system is
intriguing since this may explain similar oscillations ob-
served experimentally [1], where the frequency was much
higher than would be expected from the thermal time.

C. Numerical method

The large ratio of the reaction rates in the coupled
equations classifies the system as a stiff set of equations.
For efficient numerical integration this stiffness required
using an implicit integration scheme. In particular, we
used the backward differentiation formulas of Gear [20]
with variable order and variable time-step control.

We approximated the spatial derivatives using finite
differences on a uniform mesh with Neumann- or no-
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FIG. 17. (a) Contour plot of carrier concentration evolv-
ing in time as a function of z. There are only edge oscillations
and no whole-beam oscillations. (b) I-T representation for
the edge oscillations showing that the beam curve is almost
tangential to the zero-velocity curve.
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flux-type boundary conditions. When using an implicit
method a system of nonlinear algebraic equations must
be solved at each step. The nature of this differencing
scheme leads to a banded algebraic system with the band
width determined by the order of the approximation to
the derivatives. On each time step we solved the system
using Newton’s method with a banded matrix solver.

It was quite possible to use this method with our avail-
able computer power (Meiko i860 computing surface).
However, a two-dimensional code will be on the verge
of practicability.

IV. CONCLUSIONS

‘We have theoretically and numerically investigated os-
cillations in an InSb bistable étalon with competing non-
linearities. We have developed a method that explains
many features of the oscillations, in particular the prop-
agation of kink solutions. This relies on the stiff nature
of the InSb system, where the time constants are radi-
cally different and the fast subsystem diffuses to a lesser
extent than the slow subsystem. The method is use-
ful when attempting to find parameter ranges that yield

oscillations. The full system has been solved numeri-
cally in one transverse dimension and the properties of
kink solutions, whole-beam and edge oscillations investi-
gated. The numerical simulations confirm the theoretical
approach. For small spot sizes (of the order of the carrier
diffusion length), kink solutions are no longer applicable
and the numerical approach has to be used exclusively.
The oscillations must be similar in two transverse di-
mensions and two-dimensional simulations are underway
to confirm this. We have shown that layer oscillations
are possible even in this highly inhomogeneous system.
Because we are limited to one transverse dimension we
do not attempt quantitative agreement with experiment.
Qualitatively there is good agreement. We are able to ex-
plain the high-frequency oscillations observed experimen-
tally as either edge oscillations or a very small thermal
decay time.
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