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Quantifying Topological 
Uncertainty in Fractured Systems 
using Graph Theory and Machine 
Learning
Gowri Srinivasan1, Jeffrey D. Hyman2, David A. Osthus3, Bryan A. Moore   1, Daniel O’Malley2, 
Satish Karra2, Esteban Rougier   2, Aric A. Hagberg1, Abigail Hunter4 & Hari S. Viswanathan2

Fractured systems are ubiquitous in natural and engineered applications as diverse as hydraulic 
fracturing, underground nuclear test detection, corrosive damage in materials and brittle failure of 
metals and ceramics. Microstructural information (fracture size, orientation, etc.) plays a key role in 
governing the dominant physics for these systems but can only be known statistically. Current models 
either ignore or idealize microscale information at these larger scales because we lack a framework 
that efficiently utilizes it in its entirety to predict macroscale behavior in brittle materials. We propose 
a method that integrates computational physics, machine learning and graph theory to make a 
paradigm shift from computationally intensive high-fidelity models to coarse-scale graphs without loss 
of critical structural information. We exploit the underlying discrete structure of fracture networks in 
systems considering flow through fractures and fracture propagation. We demonstrate that compact 
graph representations require significantly fewer degrees of freedom (dof) to capture micro-fracture 
information and further accelerate these models with Machine Learning. Our method has been shown 
to improve accuracy of predictions with up to four orders of magnitude speedup.

Fractures are a foundational structure in numerous natural and engineered applications that influence our daily 
lives. Examples that motivated this study include (1) hydraulic fracturing, which has had a profound impact on 
US energy independence through the increased availability of unconventional fossil fuels1,2; (2) chemical signa-
ture from clandestine nuclear weapon testing, where gas migration through fractured rock provides the definitive 
smoking gun when used in conjunction with conventional seismic methods3 and remains critical to global secu-
rity as countries like North Korea continue to conduct low-yield nuclear tests; and (3) predicting the brittle failure 
of materials such as ceramics and some metals, e.g., corrosive damage in materials and brittle failure of ceramics 
in airplane wings, spacecraft tiles.

For all of the examples of fractured systems mentioned here, individual fracture information (geometry, ori-
entation etc.), despite being critical to macroscale behavior4, can only be known in a statistical sense. In frac-
tured systems, the connections between fractures often dominate system behavior, we refer to this connectivity 
as the topology of the fracture network. Because the fracture networks are statistically modeled, the topology is 
inherently uncertain and requires an ensemble of realizations of these fracture networks. Since the topology of 
the graph matches the topology of the fracture network, we can interrogate the topological uncertainty with the 
graph. Moreover, the uncertainty surrounding topological properties (network connectivity) dominate system 
behavior. For example, in a system with two large fractures, system behavior is very much dependent on whether 
these fractures intersect or are connected by smaller fractures. However, such structural information cannot be 
fully characterized at the macroscale due to the high computational cost incurred in representing the discontinui-
ties formed by the presence of cracks using highly resolved meshes. While there are high fidelity mesh-based frac-
ture models capable of representing millions of micro-fractures, such as dfnWorks5 and HOSS6 (both developed 
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by this team), the computational cost for 1000s of model runs to bound the topological uncertainty quickly adds 
up to petabytes of information and is not feasible7,8. Therefore, many researchers have turned to reduced order 
models (ROM) to represent these systems, but a general framework linking attributes in the high-fidelity models 
to the induced ROM is still lacking.

We present a general methodology here to account for the critical aspect of network structure in ROMs in 
fractured geo-materials using a hybrid graph theoretical/machine learning (ML) approach. The novel research 
contribution highlighted here is the general framework we have developed, demonstrated on two separate appli-
cations in brittle geomaterials, where the common theme is the importance of the underlying fracture network 
structure in governing the dominant physics. Although the applications mentioned here appear to be very differ-
ent problems occurring at different scales, the technical challenge is similar-representing the relevant physics on 
the graph through ML algorithms and quantifying the dominant topological uncertainty. Graph theory is a pow-
erful tool for interrogating structured systems. Across many disciplines, ML has proven to simplify and expedite 
previously computationally intensive processes by learning from available data and knowledge. Combined with 
graph theory, ML approaches can effectively tackle a broad set of problems in fractured systems where quantify-
ing uncertainties due to the topology is critical.

In this study we bridge the knowledge gap between the discrete (micron-mm) and continuum (cm-m) scales 
efficiently by exploiting the underlying structure of fracture networks. We formulate compact graph representa-
tions of fracture networks that avoid detailed meshing and require 2–3 orders of magnitude fewer degrees of 
freedom (dof) to capture micro-fracture information. Recent work in network theory has shown its utility for 
problems such as diffusion and percolation9 as well as failure problems10, which are similar to topics we explore. 
By combing ML with graph theory, we develop an approach that efficiently tackles a broad set of problems in 
fractured systems where structure and topology are critical. Our method seamlessly lends itself to an uncertainty 
quantification (UQ) framework that requires a fraction of the computational resources.

In order to demonstrate the robustness and utility of the method, we apply it to two important geophysical 
problems, flow through fractured media and fracture propagation. Our critical advance is to integrate compu-
tational physics, machine learning and graph theory to make a paradigm shift from computationally intensive 
grid-based models to efficient graphs. Our graph-based algorithms have made it possible to directly extract geo-
physical and topological features used in the ML algorithms to predict key phenomena that drive the underly-
ing physics. We investigate several topological metrics using graph representations and identify those that are 
appropriate for the different applications we consider. The graph-based algorithms make it possible to extract 
geophysical and topological features for use in the ML algorithms to predict key phenomena that drive the under-
lying physics. Our key finding is that appropriately configured graph-based reduced order models can maintain 
the accuracy of the high-fidelity models with up to 4 orders of magnitude speedup in computational cost. We also 
harness the power of ML algorithms to reveal previously neglected, but key microstructural effects and derive 
accurate upscaled parameters for use in continuum models. For example, continuum-scale material models 
often only consider one dominant crack orientation, or just one crack and no interactions. The proposed hybrid 
graph-theoretical/machine learning approach captures these interactions, which are critical in high-fidelity 
discrete simulations and allow the extracted information to be incorporated into continuum scale models. We 
demonstrate that combining ML and graph-based approaches makes such a framework possible.

Results
Our approach is based on verifying the following hypotheses: (1) Primary flow paths can be identified a priori 
with graph-based methods, confining computational power to critical regions of interest; (2) Predictive uncer-
tainty is dominated by the topology as a result of structural effects; and (3) Dominant emergent phenomena 
related to fracture interaction and coalescence can be predicted using ML methods that use feature importance 
identification mechanisms since the geometry and topology of the fracture networks are directly represented in 
the graphs as features. We demonstrate our advances in proving these hypotheses in the next three sub-sections.

Ascertaining the Topological Characteristics of a Fracture Network using graph-based physics 
solutions and ML-based pruning.  We first address the hypothesis regarding the pruning of a fracture 
network to only include the regions that participate significantly in the governing physics. We take on the chal-
lenging task of identifying primary flow paths through a fracture network a priori, without conducting compu-
tationally intensive mesh-based computations. High-fidelity simulations can then be used efficiently to focus on 
the primary flow path without including the extraneous parts of the domain where little or no flow occurs. Here 
our Quantity of Interest (QOI) is the first passage time of a solute being transported along with the flow field. For 
the exposition of our methods, we adopt a Lagrangian setting where the solute plume is represented by a cloud of 
tracer particles and the breakthrough curve (BTC) is the cumulative density function of the time it takes for a par-
ticle to travel from the inlet boundary to the outlet boundary. Field and laboratory experiments of flow through 
fracture networks indicate that flow channeling is a common feature through fractured subsurface systems11 
strongly suggesting the existence of primary flow pathways. Casting the discrete fracture network (DFN) as a 
graph representation allows us to identify relevant sub-networks of the entire network based solely on topology, 
and here we present three ways to prune the domain – specifically 2-core, shortest paths, and an ML classification 
approach. Representing the fracture network as a graph allows us to use existing graph theoretic algorithms while 
introducing a rich feature set that can be leveraged by ML algorithms. In this graph-representation, fractures in 
the DFN are represented as nodes in the graph and if two fractures intersect then there is an edge in the graph 
connecting the corresponding nodes7.

Figure 1a shows a modest sized synthetically generated DFN made up of 459 fractures whose lengths are 
sampled from a power-law distribution, representative of real world fracture networks12, with centroids and ori-
entations drawn from uniform random distributions. Fracture apertures vary between fractures and are positively 
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correlated to the fracture radius (a common assumption in DFN modeling supported by field observations13–15). 
The inset in Fig. 1a, shows the mesh and in particular, illustrates the acute refinement at fracture intersections 
needed to accurately resolve the high-pressure gradients that occur in these regions. The first pruning algorithm 
isolates the 2-core of the graph, which is the maximal subgraph such that every node has degree 2 or more16, as a 
relevant part of the domain that participates in the flow, shown in Fig. 1b. Source and target nodes that represent 
the inflow and outflow boundaries are shown in red and blue respectively and connect to nodes that represent 

Figure 1.  A modest sized fracture network with 459 fractures. (a) The original Discrete Fracture Network 
(DFN) model; (b) the 2-core representation of the DFN and (c) the graph corresponding to the shortest path 
between inflow and outflow boundaries. Insets show the DFN models corresponding to the reduced graph 
representations.
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fractures which intersect those boundaries. The graph full network is shown semi-transparent for reference. The 
2-core of this DFN is made up of 254 fractures, which is a reduction of 45% in number of fractures. An alternate 
way to prune the domain is by retaining only the shortest path in the network from the source to the target, which 
is shown along with the equivalent graph in Fig. 1c. In this case, the resulting shortest path network is made up 
of only 7 fractures.

In order to test how well the sub-networks represent the original DFN, we perform a comparison of upscaled 
properties. The BTC computed under the same boundary conditions for flow through the full (blue) and the 
2-core (red), and shortest path (black) fracture networks are plotted together in Fig. 2 as a function of time. 
Despite having 45% fewer fractures than the original network, the breakthrough curve of particles pass-
ing through the 2-core of the network closely resembles that of the full network. This similarity, which can be 
observed by plotting the complement of the BTC (Fig. 2b), persists except at very late times. This is consistent 
with discarding trees in the graph that cause dispersion into and out of dead ends leading to late arrivals.

Transport through the shortest path (black line Fig. 2a) network is a strong indicator for the earliest break-
through times of the full network; the first particle breakthrough of the shortest path is within 2% of that obtained 
in the full network. These results show accurate graph-based models are capable of identifying primary flow 
paths and hence an appropriate reduced domain based on the application of interest. We explored how increasing 
the number of shortest paths retained influenced the accuracy of predicting the first breakthrough times7. We 
demonstrated how to incorporate network properties into this selection for more robust predictions. We also 

Figure 2.  (a) Comparison of BTCs from the full DFN network, 2-core, and shortest path graph representations 
and (b) Complement of the BTC shows difference in tailing behavior between full DFN and 2-Core 
representation.
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performed ML on our graph-based models to better identify the sub-network that corresponds to fractures along 
the primary flowing paths17. We used supervised classification methods, specifically support vector machine and 
random forest algorithms, to identify the flowing backbones from our DFN models. In contrast to DFN models 
that can take 10 s of hours per realization, these ML methods require only minutes to train and, after training, 
require merely seconds to identify the flowing backbone. Using these classification methods we obtained pruned 
networks with around 25% of the fractures in the original network demonstrating that combining ML and graphs 
results in a powerful tool for emulating high-fidelity simulations of structured systems with a vastly decreased 
computational cost. The ML approach provides more pruning than the 2-core method while retaining accuracy. 
These results make major strides towards proving our first hypothesis: primary flow paths can be identified a 
priori with graph-based methods, confining computational power to critical regions of interest.

Quantification of Topological Uncertainty.  In an effort to further reduce computational burden, we 
exploit graph-based reduced order models as an appealing mesh-free alternative, where flow and transport cal-
culations are performed on the equivalent graph representation. Our recently developed graph Laplacian solver 
can simulate transport of conservative solutes through a fracture network18 by mapping intersections to nodes 
and fracture segments to edges, and up to 4 orders of magnitude computational speedup is achieved with accu-
racy tradeoffs. These graph representations include in-fracture attributes, e.g., lengths between intersections and 
fracture apertures, as edge-weights. Deviations in transport properties on the graph from the high-fidelity model 
are systematic. We take advantage of the systematic nature of the deviations by using a Bayesian UQ methodol-
ogy19 that quantifies system uncertainties represented by the deviations in the BTCs even when our computa-
tionally efficient graph-based reduced order models are not an exact representation of the high-fidelity model. 
Furthermore, and nontrivially, our Bayesian calibration approach accurately quantifies the uncertainty in the 
predictions of calibrated QOIs.

We demonstrate our approach on an ensemble of 100 high-fidelity DFN simulations, generated in the same 
manner as the network in Fig. 1. We refer to the high fidelity DFN as F, and the graphical representation of the 
DFN as G. We relate high-fidelity DFN BTC_F to its graph-based counterpart BTC_G, via calibration parameters 
and a discrepancy20. Finally, given a BTC_G, we modify it through calibration and a discrepancy adjustment, 
resulting in a prediction for BTC_F with uncertainty. We use a subset of the 100 networks to learn the discrepancy 
and calibration terms and the rest for testing the quality of predictions.

Figure 3a shows the deviation of the mean BTC of the ensemble obtained from our graph-based transport 
solver from the ensemble BTC generated using the dfnWorks suite5. Our Bayesian methodology corrects the 
deviation using a single calibration parameter, learned with uncertainty, to shift the BTC in time, and adds a 
discrepancy function to minimize any deviations thereafter. The resulting mean BTC is shown in Fig. 3b. Finally 
Fig. 3c shows the statistics of the system, represented by the ensemble of fracture networks generated in this 
study. The system uncertainty, characterized by a mean and the 95% prediction interval, which would typically 
be bounded by simulating a hundred DFNs, is shown in red. The corresponding ensemble uncertainty predicted 
using the corrected graph-based BTCs is shown in black. The close match between the statistics of the system 
represented by F and G indicate that very few BTC_F/BTC_G pairs are needed to correct for the discrepancies 
and bound overall system uncertainties using the reduced order models. These results demonstrate our second 
hypothesis that predictive uncertainty is dominated by structural effects but spans topological uncertainty space.

Dynamic Fracture Propagation.  Next, we exploit the nascent field of dynamic graphs combined with ML 
to develop reduced order models for the more complex case where fractures evolve with time8. Currently, reduced 
order formulations, which include semi-analytical models and continuum approximations, do not account for 
crack interactions leading to significant errors in failure predictions, particularly resulting in non-conservative 
predictions. Times to failure are typically over-predicted resulting in failure before it is expected. Here, we define 
time to failure to be the amount of time that elapses between when the loading process begins and when a con-
nected fracture spans the entire sample, e.g., in the lower left of Fig. 4. The eventual goal of these simulations is to 
predict the evolution of the effective moduli of the material as cracks grow and coalesce leading to failure of the 
material.

The first step in formulating a more accurate material model is learning how crack interactions influence the 
time to failure, and determining characteristics of preferential paths to failure. We generate crack growth and 
interaction data from running several simulations of HOSS, a computationally expensive, high-fidelity crack evo-
lution model that can resolve individual micro-cracks unlike the macro-scale continuum models. HOSS accounts 
for interactions between micro-cracks in addition to coalescence and growth damage evolution mechanisms. We 
identify key features in the crack growth data (orientation, geometry, etc.) and map the evolving crack network 
into a dynamic graph model, where cracks are represented by a node and edges correspond to intersecting cracks. 
The data is partitioned for training and validation purposes and tested on simple fracture systems. The ML algo-
rithms employed were Decision Trees (DT) and Random Forests (RF) and samples were seeded with 20 initial 
micro-cracks. These algorithms provide great insight on feature importance within the model and data21,22. These 
predictive tools were compared with the high fidelity results (HOSS results).

In the test cases studied, the sample size was 2 m × 3 m, with tensile loading at the top boundary, holding the 
bottom fixed. Fractures were randomly positioned with 3 initial orientations: 0°, 60°, and 120°. The initial length 
of all cracks was set at 30 cm. Figure 4 illustrates one of these randomly generated initial configurations. Because 
of the loading conditions we would expect mode I failure, which is what we see in Fig. 4. The solid line lines in the 
bottom right panel represents the path to failure which is accurately predicted by the Random Forest model. The 
dashed indicates crack growth and coalescence in the HOSS simulations which are not captured in the Random 
Forest model. Crack propagation is simulated until complete material failure occurs. Due to its prior success and 
the small number of datasets (20 simulations), RFs and DTs have been employed to predict the time to failure. 
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In addition to time to failure, the failure path is predicted based on cracks most likely to propagate and coalesce. 
Figure 5 shows the predicted times to failure for HOSS, DTs and RFs. The number of fractures oriented for mode 
I failure, and the maximum distance between neighboring fractures were the features extracted from each simu-
lation. The importance of these features was verified with feature selection algorithms and resulted in the highest 
estimators’ accuracy. The agreement between the various predictive models (ML and analytical) and the high 
fidelity (i.e., HOSS) results are quantified in terms of an R2 value. The RF method performs worse than the DT 
method due to the small amount of training data used. For both of these models, the R2 is expected to increase 
with more training data until the point where additional data would only result in overfitting and yield dimin-
ishing returns. Representing spatial domains with RF and DTs is a new approach that has been highly successful 
for this crack propagation dataset. These results take the first steps in proving our third hypothesis that dominant 
emergent phenomena related to fracture interaction and coalescence can be predicted using ML methods.

Figure 3.  Calibration process for reduced graph-based BTC (Top) Discrepancy between graph-based BTC_G 
in black and DFN-based BTC_F in red (Middle) BTC_G calibrated to match BTC_F (Bottom) Predictions of 
BTC_F based on calibrated BTC_G with uncertainties closely match ensemble statistics of directly computed 
DFN-based BTC.
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Discussion
The proposed methodology integrates computational physics, machine learning and graph theory to make a 
paradigm shift from computationally intensive high-fidelity models to coarse-scale graphs without loss of crit-
ical structural information. The underlying structure of fracture networks is critical to the dominant physics 
governing the system and the graph-based approaches offer great promise in collapsing often neglected, yet key 
microstructural information, into a compact representation. This key concept allows for a wider range of scales 
previously considered impossible to be captured at once. We demonstrated the utility of the method on two 
important geo-material problems, flow through fractured media and fracture propagation.

For the flow problem, the method allows us to easily identify primary flow paths without running flow and 
transport simulations. For the dynamic fracture problem, we refer to the path to material failure through the 
growth and coalescence of cracks that exhibit specific initial characteristics under certain loading conditions.

We pruned discrete fracture networks based on two separate topological considerations, the aggressive short-
est path and the conservative 2-core, which yielded vastly different results, each suitable for different scenarios. 
The results indicate that the shortest path is sufficient to accurately predict first arrival times with computations 
performed on only 10% of the original network. Since our solvers scale as O(N2), this results in four orders of 
magnitude computational savings (Fig. 6). This result is significant in the nuclear nonproliferation scenario of 
detection of chemical signatures following underground explosions. The objective is to detect trace particles of 
Xenon gas once it has migrated upwards to the atmosphere. The highest-level decision is when and where one 

Figure 4.  Comparison of HOSS simulation to ML predictions and the graphical representation are shown here 
at (top) an early time and (bottom) failure. The solid line lines in the bottom right panel represents the path 
to failure which is accurately predicted by the Random Forest model. The dashed indicates crack growth and 
coalescence in the HOSS simulations which are not captured in the Random Forest model.

Figure 5.  Comparison of high fidelity model HOSS to graph-based ML reduced order models using Decision 
Trees (DT) and Random Forest (RF).
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might expect to fly over with detectors to optimize air sample collection, and the shortest path provides sufficient 
information to inform that decision. First arrival times are also crucial for answering questions about contam-
ination of groundwater resources as a result of underground nuclear waste repositories or CO2 sequestration 
initiatives. In order to determine policy in a risk-informed manner, it is beneficial to consider a wide range of top-
ological, geophysical and geometric configurations to bound the overall system-level uncertainties. Our graph/
ML algorithms help us explore this vast uncertainty space in an efficient manner. On the other hand, the more 
conservative 2-core pruning algorithm results in a close match with the full network for the entire breakthrough 
curve except at very late times. For applications of oil and gas or hydrothermal extraction, the entire production 
curve is of relevance and the 2-core approximation can quickly provide insight into optimal locations for drill-
ing production wells to maximize extraction by performing several thousand simulations with varying target 
locations.

Fractured systems have inherent topology uncertainty that dominants system behavior. Traditional UQ meth-
odologies typically vary the parameters for a given (fixed) fracture network to determine the variations in the 
QOI, but this approach fails to account for the dominant topological uncertainty. Hence, comprehensive uncer-
tainty quantification for these systems require 1000s of runs in a Monte Carlo framework varying the topology 
as well as geometry and physical properties. This step requires generating a different mesh in each instance, 
which even after the primary flow paths and reduced network have been identified, is a significant computational 
endeavor. This burden is the main motivation to turn to graph-based reduced order models as an appealing 
mesh-free alternative. Here the fracture characteristics are collapsed into edges with nodes representing fracture 
intersections. This assumption however comes with a cost in terms of reduced accuracy, or a systematic deviation 
from the high-fidelity solver operating on F.

The BTCs are nearly identical for small homogeneous systems, but for larger networks, we observe systematic 
deviations that increase with the size of the network18. Our UQ approach not only accounts for this systematic 
deviation through a calibration parameter, but also formulates a discrepancy term to account for the incomplete 
physical representation (see equation 1 in the Methods section). In the case presented here, possible systematic 
discrepancies arise due to reasons including but not limited to pruning the domain and simplifying the transport 
physics on the graph. Given 1000s of BTC_G and applying the calibration and discrepancy adjustment to each 
one results in 1000s of predictions of BTC_F with uncertainty without the need to compute 1000s of BTC_Fs. 
Estimates based on BTC_G (Fig. 3c) closely track those based on BTC_F, demonstrating that we can recover 
uncertainty bounds on the system accurately without the need to compute 1000s of expensive BTC_Fs making 
UQ feasible for more complex problems than previously possible. In the UQ method we acknowledge the sim-
plified physics on the graph-based models in the tradeoff between accuracy and efficiency and account for it 
through modeling the calibration parameters and model form discrepancy. Our method is also agnostic to the 
size of the fracture network except in the small training set requiring DFN-graph pairs to learn the calibration 
and discrepancy.

The final part of this research addresses the complexity of fracture networks and the consequent computa-
tional burden that is limiting for large length scale modeling tools through the development of a coupled ML and 
graphical modeling approach. The premise of domain reduction for the brittle material failure problem is the 
assumption that clearly defined paths to failure exist and can be predicted a priori based on cracks characteristics 
and the extent of their interactions. Our eventual goal is to demonstrate the methodology on a simple fracture 
propagation example recognizing that our algorithms need to be further refined for more complex scenarios. Due 
to the promising predictions for the time and location of material failure (Figs 4, 5), the corresponding choice of 
features directed us to the driving factors of fracture network growth. As expected in mode I failure, fractures that 
are perpendicularly oriented to the load tend to propagate faster than other orientations. Additionally, location 
and the distance between fracture tips play a vital role in inter-fracture connections. The amount of data has 
limited our analysis to relatively basic ML algorithms that have constrained predictive abilities. It has been shown 
that even with these under-informed approaches, significant trends in fracture network growth and the time to 
material failure can be found.

Figure 6.  CPU times for dfnWorks suite - meshing, flow and transport solvers for the different fracture 
networks obtained by pruning vs. the full DFN.
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The insight on spatial and temporal material failure will lead to the building of larger predictive machines that 
can handle the wide range of conditions a material can be subject to. Our ongoing work utilizes a dataset that is 
multiple orders of magnitude larger. Initial fracture lengths, magnitude of axial load, fracture density, and geome-
tries are all routes that are being analyzed in more depth. Despite the small amount of training data and relatively 
basic ML algorithms considered in this study, we see that significant trends in fracture network growth and the 
time to material failure can be found. The insight on spatial and temporal material failure will lead to the building 
of larger predictive machines that can handle the wide range of conditions a material might be subjected to.

Methods
The overall objective of this work is to develop reduced order hybird graph-based / machine learning representa-
tions of high fidelity simulators to answer key science questions regarding the physics in fracture networks. The 
flow and transport simulations on the fracture networks are run using the dfnWorks suite, developed at Los 
Alamos by this research team. dfnWorks combines the feature rejection algorithm for meshing (FRAM)23 to 
create conforming Delaunay triangulations of the DFN using the LaGriT meshing toolbox7, the parallelized sub-
surface flow code PFLOTRAN24, and a particle tracking method. dfnWorks has been used in a variety of studies 
including hydraulic fracturing25,26 and parameter assessment for subsurface flow and transport in large fracture 
networks27,28.

We use dfnWorks to generate a discrete fracture network representation of fractured systems and simulate 
flow and transport therein. The next step is to construct a graph representation G of the DFN F based on the 
topology alone. Fractures are mapped to nodes in the graph and edges exist between nodes if the two fractures 
that they represent intersect one another. This mapping is an isomorphism that allows us to switch between F and 
G uniquely. Source and target nodes are attached to nodes whose corresponding fractures intersect the inflow and 
outflow boundaries respectively7. We then find the shortest path and the 2-core representations on this directed 
graph using standard algorithms in NetworkX29. The reduced graph representations are mapped back to fracture 
networks and we use dfnWorks to generate the mesh, and run flow and transport solvers to produce breakthrough 
curves on the pruned network. Since the numerical solvers within dfnWorks scale roughly as O(N2), where N is 
the number of mesh elements, the computational speedup from replacing F with F′ is significant, as seen in Fig. 6.

The transport algorithm on the graph solves Laplace’s equation for flow and transport is performed using 
particle tracking on a graph representation of fracture networks18,30. In this representation, nodes are midpoints 
of fracture intersections and edges represent flow pathways on fractures between intersections. The graph method 
which solves Laplace’s equation is derived from balance of mass on graph nodes along with an equivalent Darcy 
model where the mass flux is proportional to the pressure gradient across two graph nodes. While this method-
ology is 4 orders of magnitude faster than the above-mentioned method of reverting back to the fracture network 
and applying the dfnWorks suite to obtain the BTCs, the approximations made in the reduced order graph model 
result in systematic deviations.

We apply our Bayesian UQ methodology to correct for the observed systematic deviations as follows. The 
function f(BTC_G, θ) may be a simple time scaling of BTC_G where θ captures the magnitude of the shift. The 
discrepancy is often a smooth function in time and modeled with a Gaussain process, which is a distribution on 
smooth functions31,32. The relationship is as follows:

θ δ= + +BTC_F(t) BTC_G(t ) (t)

where the θ are calibration parameters and δ is the discrepancy. Here, the relationship between BTC_F and 
BTC_G is decomposed into two components. The first is a calibration component where we learn the value of 
θ that minimizes the difference between BTC_F(t) and BTC_G(t + θ) across all pairs of BTCs with uncertainty. 
The second component captures the unexplained difference between BTC_F(t) and calibrated BTC_G(t + θ) 
referred to as discrepancy. The discrepancy is often a smooth function in time and modeled with a Gaussian pro-
cess, which is a distribution on smooth functions31,32. We start by learning the relationship between BTC_F and 
BTC_G from a small number of distinct simulations of transport on F generated using known fracture statistics 
and the corresponding G. Thus, the computationally expensive BTC_F is only computed a small number of times. 
We then quantify the uncertainties by performing transport calculations on 1000 s of computationally inexpen-
sive G derived from the corresponding F’s. We validate our UQ approach both at the individual BTC_F scale and 
the system scale via posterior predictive checks33. Given a BTC_G, we modify it via calibration and a discrepancy 
adjustment, resulting in a prediction for BTC_F with uncertainty. In the training and validation phase, we com-
pare the known BTC_F to the predictions to ensure that the actual BTC_F does lie within the uncertainty bands 
predicted for BTC_G.

The fracture propagation simulator HOSS6 is a discrete-element finite element analysis tool that can account 
for the complexity of a fracture network’s growth over periods of time. HOSS can resolve individual micro-cracks 
unlike the macro-scale continuum models, and can also account for interactions between micro-cracks in addi-
tion to coalescence and growth. As previously mentioned, this software can result in billions of unknowns for a 
relatively small system (106 cracks) resulting in a computationally infeasible problem on the macro-continuum 
scale.

For the dynamic fracture propagation scenario, the first step is the selection of key features including initial 
lengths, orientations, loading conditions, and fracture propagation rates obtained from performing HOSS simu-
lations. These features are imported into a graphical model where an individual fracture and its properties (orien-
tation, geometry, etc.) are represented by a node and the features of that node. The subsequent step is to allocate 
a certain percentage of the data for training the ML model and the remaining data for validation of that model.

The ML algorithms employed for 20 micro-crack fracture networks are Decision Trees (DT) and Random 
Forests (RF). These algorithms provide great insight on feature importance within the model and data for smaller 
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datasets such as in this study, which used 20 simulations total. DTs cycle through all the feature vectors (proper-
ties extracted from a dataset or model) and labels (features that are being predicted), then finds the best feature 
to split the data on. Usually, this split point is where the standard deviation between the two resulting groups are 
minimized. RFs are considered ensemble models since they are composed of many smaller models, while DTs 
consist of a single model. RFs cycle and split datasets in a very similar fashion to DT. The main difference, instead 
of cycling through the entire dataset with one DT, the dataset is split up and trained on separate DTs, hence the 
name RFs. The final prediction for RFs is a weighted average of all the separately trained models. A depth of 3 was 
used for both RFs and DTs.

These predictive tools are compared with HOSS results. The DT and RF were trained and tested with 
Leave-One-Out Cross-Validation using N-1 data points for training while testing on the one held out data point. 
Initial configuration information (distance between fracture tips, orientation, length, etc.) provides the ML model 
with training data and corresponding labels are the times when the material fails.

Data availability.  The datasets generated and analyzed during the current study are available from the cor-
responding author upon request.
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