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Abstract
The phenomenon of flow-channeling, or the existence of preferential pathways for flow in fracture networks, is well known.
Identification of the channels (“backbone”) allows for system reduction and computational efficiency in simulation of flow
and transport through fracture networks. However, the purpose of machine learning techniques for backbone identification
in fractured media is two-pronged system reduction for computational efficiency in simulation of flow and transport as well
as physical insight into the phenomenon of flow channeling. The most critical aspect of this problem is the need to have a
truly “physics-informed” technique that respects the constraint of connectivity. We present a method that views a network
as a union of connected paths with each path comprising a sequence of fractures. Thus, the fundamental unit of selection
becomes a sequence of fractures, classified based on attributes that characterize the sequence. In summary, this method
represents a parametrization of the sample space that ensures every selected sample sub-network (which is the union of
all selected sequences of fractures) always respects the constraint of connectivity, demonstrating that it is a truly physics-
informed method. The algorithm has a user-defined parameter which allows control of the backbone size when using the
random forest or logistic regression classifier. Even when the backbones are less than 30% in size (leading to computational
savings), the backbones still capture the behavior of the breakthrough curve of the full network. Moreover, there is no need to
check for path connectedness in the backbones unlike previous methods since the backbones are guaranteed to be connected.

Keywords Discrete fracture networks · Fractured porous media · Physics-informed · Data-driven · Machine learning ·
Classification

1 Introduction

The simulation of fluid flow and the associated transport
of dissolved chemicals through fractured media is an inher-
ently multiscale phenomenon as the length scale of the frac-
tures spans several orders of magnitude [1]. Geological sites
comprised of granite, basalt, and shale are typical examples
of such fractured media, possessing an interconnected net-
work of fractures embedded within a rather impermeable
rock matrix. The simulation of flow through these networks
is necessary for several subsurface applications including
hydrocarbon extraction [2–4], environmental restoration of
contaminated fractured media [5–7], CO2 sequestration [8],
and aquifer storage and management [9]. Discrete fracture
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network (DFN) models are one tool to model flow and
transport through fractured media. In it, individual fractures
are represented as N − 1-dimensional objects, e.g., lines
in two dimensions or planar polygons in three dimensions,
embedded within an N-dimensional space, and each frac-
ture is assigned a shape, location, and orientation within
the domain based on a site characterization. Each fracture
is meshed for computation and the governing equations for
flow and transport are numerically integrated on the net-
work. However, the choice to explicitly represent fractures
and network structure makes DFN models computationally
expensive for networks of even modest size.

As fracture locations and attributes are modeled stochas-
tically, a large number of network realizations are required
to bound system uncertainty, which exacerbates the prob-
lem of computational expense. The basic principle is that
an ensemble is generated using computational models and
the Monte Carlo (MC) method is used to determine the
likelihood of a scenario. While the standard MC method is
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the baseline method in uncertainty quantification, it suffers
from slow convergence. Variants of MC, such as Multi-
Fidelity Monte Carlo (MFMC)[10] and Multi-Level Monte
Carlo (MLMC) [11], have been developed to approximate
the ensemble mean of the quantity of interest with small
variance and faster convergence rates. However, in the case
of fracture networks, MLMC [12] relies on several levels of
accuracy in the space discretization and utilizes more sam-
ples at the cheaper (less accurate) levels while improving the
estimates with few samples at the finer levels. The method
presumes the existence of a solver and a meshing strategy
that can use very coarse meshes, but with fracture networks,
meshing remains a major challenge. MFMC [13], on the
other hand, utilizes two or more models with varying levels
of fidelity and computational efficiency, and the require-
ment then is lower fidelity models that are highly corre-
lated but significantly increase computational performance.
Development of reduced order models or low-fidelity mod-
els is itself a challenging issue in fracture networks, and this
context provides a segue into an account of their develop-
ment. Another method to reduce the computational expense
is to upscale fracture networks to continua with effec-
tive properties [14–17], but it fails to capture the physics
accurately.

However, the knowledge that there exist preferential flow
pathways due to channeling effects [18–21] in fractured
media implied that there are subnetworks within the
flow domain that determine overall transport behavior.
In turn, significant computational savings are possible
if these dominant paths or “backbone” of the network
could be identified, for one could then restrict the domain
to the identified subnetwork alone and retain a good
approximation to the quantities of interest such as the the
first passage time distribution of solutes passing through the
network. Ideally, one would like to maximize the number
of fractures removed from the network while minimizing
the discrepancy with the true quantity of interest. However,
in the construction of a backbone through the removal of
fractures, the most important criterion is the presence of a
connected path through the backbone to mimic the flow and
transport through the full network. The requirement of a
connected path is a constraint on our physical system that
limits the space of solutions, which is the power set (set of
all subsets) of the set of fractures in the full network. Studies
in sparse fracture networks with fracture sizes spanning a
range of length scales indicate that network structure [22–
25] and flow direction [6] are more dominant in determining
regions of flow channelling than geometric or hydraulic
properties of the fractures.

The mathematical construct of a graph, a set of vertices
connected by a set of edges, is a well-suited tool to represent
this key network structure information. The mapping of
a fracture network to a graph has been done in two

different, but related, ways, and both avenues have been
explored toward achieving system reduction. A topology-
based bijective mapping (with fractures corresponding to
graph vertices and fracture intersections to graph edges) was
used by Hyman et al. [26] to predict first-passage times
accurately. Other instances of use of this mapping in a
different context can be found in the work of Ghaffari
et al. [27], Andresen et al. [28], Santiago et al. [29], Sævik
and Nixon [30], Hope et al. [31], Hyman and Martı́nez [32],
and Huseby et al. [33]. Aldrich et al. [34] also introduced
a weighted graph representation with edge weights based
on particle transport through the network. However, in
their work, the backbone identification required running
simulations on the full network. Both Hyman et al. [26] and
Aldrich et al. [34] considered the backbone to be the union
of the shortest paths through the network, thus ensuring the
connectivity of the backbones obtained.

Karra et al. [35] presented the other “hydrology-
based” mapping to simulate flow and transport on the
graph representation itself (see [36–39]). In this mapping,
intersections in the DFN correspond to vertices of the
graph, and fractures are represented as a clique of edges
and edge weights are based on the hydrological properties.
However, the predictions deteriorated systematically as the
networks increased in size and became heterogeneous, and
a systematic correction technique was employed to make
the predictions accurate and fast [40]. Srinivasan et al. [41]
used the same mapping by applying flow physics on the
graph and thresholding the graph Darcy fluxes to extract a
backbone of the DFN, thus showing that the technique is
useful for applications in which the entire distribution of
mass breakthrough times is of interest and not just the first
passage times. They penalized subnetworks by adding more
fractures and making the networks larger if the constraint of
connectivity was not satisfied.

The abundance of existing simulation data that can
be obtained from high-fidelity simulations on fracture
networks, as well as the large number of fractures contained
in each network, suggests that a data-driven (machine
learning) approach could be useful to address the problem of
backbone identification. In this context, the role of machine
learning in DFN modeling is not limited solely to reduction
of computational expense through backbone identification,
for machine learning can also be used to advance our
understanding of how the network determines the structure
of the flow field within the DFN. There has been a surge
in the use of machine learning (ML) in the geosciences
[42], fueled by better sensors, improvements in large-scale
simulations, and the appearance of large, publicly available
datasets stored over the cloud [43]. Sources of these data
include remote sensing [44, 45], in situ sensors such as
weather stations or instruments on ocean buoys [46], and
ensembles of climate models [47]. Aside from applications
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in the geosciences, machine learning has also been used
successfully to model disease spread [48], soil health [49],
land cover classification [50], and is even expected to aid
clinical medicine [51]. These data present challenges in the
form of dimensionality, high spatio-temporal correlation,
dynamic domains, small sample sizes, missing data, and
rare events of interest [43, 52, 53].

The data used in an ML framework in various
applications are often the product of well-studied and
documented physical systems, and offer a great opportunity
to integrate physics with machine learning methods [54,
55]. Such methods are known as physics-informed machine
learning (PIML) techniques. PIML methods [56, 57]
combine information about the physics of the phenomena
into the machine learning framework by viewing the
governing equations or physical principles as constraints on
the system or search space of solutions. Machine-learning
methods, by themselves, are mathematical constructs that
are agnostic to the source of data or the physical phenomena
that produce it. The interest in physics-informed methods
has occurred as research communities look to replace
computationally expensive and complicated mathematical
models with data-driven emulators that are often based on
machine learning algorithms.

There are two paths to construct a PIML method,
well illustrated by analogy with well-known techniques
in mathematics. One can enforce constraints either by
penalizing variable choices that violate it (Lagrange
multipliers and penalty methods in optimization, definitions
of curves as level sets), or one can parametrize the search
space and define a new one by a change of variables so
that there are no constraints in the new search space. An
example of the latter would be the parametric representation
of most well-known curves. A non-trivial example is that
of numerical discretization with divergence-free or curl-free
finite elements. The second method, which is considerably
difficult to design and not always feasible, is nevertheless
preferred when viable, and in this article, we propose such
a method for fracture networks.

The first work to utilize machine learning in the context
of DFN to obtain backbone subnetworks was that of Valera
et al. [58]. They endowed fractures in the network with
local and global topological features based on degree and
centrality measures calculated from the topology-based
bijective mapping, and also simple physical features based
on the geometry of the fracture. The backbone fractures
were selected by a classification problem posed with respect
to the features, and a flow topology graph construction [34]
was used to define the backbone fractures in the training
set. Valera et al. found that global topological features
of the network vertices (fractures) were more important
than local topological features in the selection of backbone
fractures. However, there were no constraints placed on

the search space of fractures so disconnected subnetworks
could be identified by the method. While the technique
successfully produced small backbones and good agreement
with the breakthrough curves, there were also instances of
disconnected subnetworks, violating the primary criterion
for a suitable backbone. Moreover, there were no parameters
to control the size of the backbone network other than the
parameters of the classification algorithm.

In a bid to eliminate these shortcomings, Srinivasan
et al. [59] proposed a different definition of what constitutes
the backbone, based on particle-tracking simulations of a
non-reactive tracer advecting with the fluid, and introduced
a non-dimensional parameter that controls the size of the
backbone. Other than this change, their method is very
similar to that of [58], in that there is no attempt to constrain
the search space and achieve connected subnetworks.
However, they do avoid the problem of disconnected
subnetworks for the range of non-dimensional parameter
values considered, and explain it as the result of using
the precision–recall trade-off in the classification problem
to their advantage. They also credited their definition of
backbone as being more reflective of the physics. Thus,
in the works of both Valera et al. [58] and Srinivasan
et al. [59], there is no guarantee that the backbones produced
will respect the constraint of connectivity. The drawback in
both these methods springs from the same source, namely,
that the fundamental unit of selection in the classification
algorithm is a fracture; consequently, it is challenging to
limit the selection to connected subnetworks.

We address this issue by viewing a DFN a union of
sequences of fractures, i.e., connected paths through the
network, rather than a union of individual fractures. This
choice is motivated by the notion that along a particle
pathline, particles travel through a sequence of fractures.
Thus, the physical system dictates that a backbone is a
sequence of fractures along which particles pass through
the system. In terms of our classification method, the
fundamental unit of selection is therefore a sequence
of fractures, rather than individual fractures. Similarly,
instead of features of individual fractures, features for
classification are based on the sequence of fractures.
This effectively restricts the sample space to ensure that
every selected sample subnetwork (which is the union of
all selected sequences of fractures) is connected. Thus,
we use the physical principle that backbones must be
connected subnetworks to constrain the solution space of
our classification problem. The quality of the method is
demonstrated via the identification of small backbones that
are always connected (leading to computational savings),
but still capture the behavior of the breakthrough curve of
the full network.

In this context, a comparison with other graph-based
methods of backbone identification is illuminating. Some
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graph-based backbone identifications are based on the net-
work topology [26] and do produce connected backbones.
However, they do not consider the physics in construct-
ing backbones. Some other methods use the physics of the
problem (flux thresholding on pipe-network model [41]) but
cannot guarantee connectivity. In Hyman et al. [37], the
authors actually use both the graph representations of a DFN
so that they get connected backbones with a greedy algo-
rithm that is guaranteed to terminate in finite time. However,
the method gives the user no control over the size of the
backbones. The machine learning method we describe here
uses the graph topology mapping so that features are read-
ily interpretable, and it uses the physics knowledge gleaned
from the high-fidelity simulations. Moreover, there is a user-
controlled parameter that can be set to control the size of
the backbones, which are guaranteed to be connected. The
physics inherited by the graphs for backbone identification
procedures are limited so far to steady-state, single-phase
flow. If one wants to incorporate more advanced physics
like transient or multiphase flow, the machine learning
framework is the natural choice, wherein it is easy to incor-
porate the physics into the high-fidelity model, and thus
consequently, into the training data for machine learning.

2 Transport behavior in fracture networks

We represent the transport of a solute through a fracture
network as a collection of passive, conservative particles
moving through the network. In this section, we outline our
method to use this Lagrangian approach to identify network
backbones.

We use the DFNWORKS [60] suite to generate each
DFN, solve the steady-state flow equations, and determine
transport properties therein. DFNWORKS combines the
feature rejection algorithm for meshing (FRAM) [61], the
LaGriT meshing toolbox [62], the parallelized subsurface
flow and reactive transport code PFLOTRAN [63], and an
extension of the WALKABOUT particle-tracking method [64,
65]. FRAM is used to generate three-dimensional fracture
networks. LaGriT is used to create a computational mesh
representation of the DFN in parallel. PFLOTRAN is used
to numerically integrate the governing flow equations.
WALKABOUT is used to determine pathlines through
the DFN and simulate solute transport. Details of the
suite, its abilities, applications, and references for detailed
implementation are provided in Hyman et al. [60].

In the DFN approach, the network of fractures is
represented explicitly as intersections of objects with co-
dimension 1, i.e., intersections of planar shapes such
as rectangles or ellipses in three-dimensional space.
Furthermore, each representative fracture is endowed
with attributes such as size, orientation, aperture, and

permeability. Such attributes are drawn from a probability
distribution that is constructed to fit data sampled from a
geological site [66, 67].

The equations governing steady flow in a fracture with
uniform aperture are the aperture-averaged approximations
due to Boussinesq [68] in conjunction with the assumption
of incompressibility:

Q = − b3

12µ
∇p (1)

div (Q) = 0 (2)

where Q is the volumetric flow rate per unit fracture width
normal to the direction of flow, ∇p the pressure gradient, µ

the viscosity of the fluid, and b the aperture of the fracture.

Defining q := Q
b

as the (volumetric) Darcy flux per unit

cross-sectional area normal to the flow gives:

q = − b2

12µ
∇p (3)

div (q) = 0 (4)

The factor b2

12 plays the role of a permeability which is
why the governing equation may be thought of as Darcy’s
Law, expressing the proportionality between the volumetric
flux and the pressure gradient. These two equations are
combined to yield:

div

(
b2

12µ
∇p

)
= 0 . (5)

We assume that the domain is a cube of side L meters, and
that flow is driven by the pressure gradient resulting from
prescribed pressures at the two ends (faces) of the domain,
with no-flow boundary conditions at the other boundaries.
Aligning a Cartesian coordinate axis with the flow direction,
without loss of generality, we assume that flow is along
the x-axis so that the inlet and outlet planes have the
representations x = 0 and x = L respectively. The pressure
difference across the inflow and outflow boundaries is set to
1 MPa.

In the next step, an Eulerian velocity field u(x) consistent
with the Darcy fluxes is reconstructed by using the
technique outlined in Painter et al. [65] and Makedonska
et al. [64]. The trajectory of a particle starting at location a
on the inlet plane with a mass m(a) through u(x) is given by
the kinematic relationship:

dx(t; a)

dt
= v(t; a), x(0; a) = a, (6)

where v(t; a) := u(x(t; a)) is the Lagrangian description of
the known velocity field. The initial distribution of particles
on the inlet plane is assigned using flux-weighting, where
the number of particles at a location is proportional to the
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inflow flux at that location [21]. We take every particle to
have the same mass m(a). We assume there is complete
mixing at fracture intersections so that the probability to
enter an outgoing fracture is weighted by the outgoing flux
therein [69].

Thus, once Eq. 6 is integrated to obtain x(t; a), we can
gather the first passage time of a particle to cross the outlet
plane, τ(a). The distribution of τ(a) across the ensemble
represents the probability of solute mass breaking through
at a time t , given by the Lebesgue integral:

�(t) = 1

M0

∫
�a

dm(a)δ[t − τ(a)], (7)

where �a is the set of all particles, δ[·] is the Dirac-delta
measure, and M0 is the total mass of the particles. The
function �(·) is referred to as the breakthrough curve, and
it is the main quantity of interest in this article.

In addition to the time taken for a particle to pass through
the system, we can track the sequence of fractures through
which the particle travels as it moves through the fracture
network. Since the dimensions and location of all fractures
in the network are known, the value of x(t; a) for a particular
time t permits us to determine the particular fracture within
which the particle is instantaneously located. Starting by
representing a DFN composed of n fractures as a set F =
{fi} for i = 1, . . . , n, the sequence of fractures traversed
by the kth particle is the finite set S(k) = {fi, fj , . . . },
which we call the particle trace. Once constructed, the
collection S(1), S(2), . . . across �a allows us to determine
the number of particles (and thus proportion of the fluid
mass) that passed through a particular fracture. Intuitively,
it is clear that this construction helps identify sequences of
fractures that form the network backbone. This concept is
developed and formalized to create a flow topology graph
that is integral to further developments in this paper, and we
describe it in greater detail in relation to the construction of
the network backbone.

2.1 Flow topology graph representation of DFN

Thinking of DFN as a collection of intersecting fractures
leads to a natural association with the mathematical
construct of a graph. A graph is a structure used to
depict a set of objects along with the relationship between
them (taken in pairs). Specifically, a graph is an ordered
tuple G(V, E,F) consisting of a set of vertices V =
{v1, v2, . . . }, a set of edges E = {eij |F(vi, vj ) = +1}
for “related” vertices vi, vj , and a function F : V ×
V �→ {+1, −1} that defines whether or not two vertices are
“related.” For brevity, however, the third argument is often
suppressed, and a graph is denoted simply by G(V, E).
Within this context, for a given problem, one can construct
different graphs by changing either the objects that make

up the vertex set V or the edge set E, or the definition of
when elements in V are said to be related, or both. Both the
vertices and edges can also have weights assigned to them
to further encode information about the vertices themselves
or the connection between vertices.

One construction of a graph based on a DFN would be
to use the set of fractures as the vertex set V and define
two vertices to be related, i.e., possessing an edge, if the
two fractures intersect [28, 31, 33]. Formally, for a DFN
F , we can define a mapping that transforms F into a graph
G(V, E) composed of |V | = n vertices, and |E| edges
as follows: For every fracture fi in the network, there is a
corresponding vertex in V , and if two fractures intersect,
fi ∩fj �= ∅, then there is an edge e(i, j) ∈ E that represents
their intersection. Additionally, representative source (s)
and target (t) vertices are added to V to incorporate flow
direction. If a fracture fi intersects the inflow boundary,
then an edge is added to E between the vertex corresponding
to fi and the source vertex s to represent their connectivity,
likewise for t and the outflow boundary.

A path in a graph G(V, E) is a finite sequence
{vi, vj , . . . vn} consisting of elements in the vertex set V .
In this instance, the path is said to be from vertex vi to
vertex vn. At this juncture, it becomes clear that each of the
particle-traces S(1), S(2), . . . that represent the sequence of
fractures traversed by a particle in the DFN is equivalent to
a sequence of vertices corresponding to a path through the
graph, from the source vertex to the target vertex. Thus, the
graph representation has naturally inherited the concepts of
Lagrangian transport, and serves as a surrogate to the DFN.

Figure 1 is an example of the mapping and how particle
information can be included into the graph. Subfigure (a)
shows a DFN composed of 45 fractures colored by the
number of particles that pass through each fracture and (b)
is the corresponding graph representation of the DFN shown
in (a). Here, the vertex size is proportional to the number of
particles that pass through the corresponding fracture. The
source (inflow) is colored blue and the target (outflow) is
red.

Note that multiple graph representations are possible for
a DFN. The most general representation is a bipartite graph
where fractures and intersections are two disjoint vertex
sets of the graph [37] from which other representations
previously discussed can be obtained via graph projections.
As mentioned earlier, one could also consider the set of
fracture intersections to be the vertex set of the graph [35,
41].

2.2 Backbones

The formal nature of this graph representation, and the
inclusion of particle information onto the graph, provides a
convenient framework to identify the backbone of a DFN.
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Fig. 1 a A DFN composed of
45 fractures colored by the
number of particles that pass
through each fracture. b A graph
representation of the DFN
shown in (a). Vertex size is
proportional to the number of
particles that pass through the
corresponding fracture. The
source (inflow) is colored blue
and the target (outflow) is red

(a) (b)

Given a graph G representing a DFN, denote the set of
all vertices in the network as GN . Choosing a backbone is
tantamount to defining a function:

φ : GN → {0, 1}, (8)

Thus, one determines GB ⊂ GN = φ−1({1}) to be
the set of vertices (fractures) in the backbone, while
the list of excluded vertices (fractures) GN − GB =
φ−1({0}). Our goal is to construct the mapping that
identifies backbone vertices without performing high-
fidelity simulations. However, we first construct a backbone
that one could obtain based on results from the high-fidelity
simulations.

To identify a backbone, we first represent the DFN with
a flow topology graph (FTG) using the method provided
by Aldrich et al. [34], which we briefly recount for
completeness. Given a DFN with n fractures and k particle-
traces, we create the vertex set V = {v1, . . . , vn, vs, vt }
consisting of the fractures and source and target vertices as
before. Now, corresponding to a given particle-trace, there
is a path on the graph that starts at the source vertex and
ends at the target vertex. In the particle-trace S(k), each time
a particle transitions from vertex vi to vj , we create an edge
directed from vi to vj or add 1 to the edge weight wi,j

if it already exists. Once this process is followed for all
{S(i) : i = 1, 2, . . . , k}, cycles are removed by eliminating
the edge with lesser edge weight. Finally, we reset the edge
weight to be the reciprocal, i.e., 1/wab, so that edges with
high proportion of particles flowing through (corresponding
to backbones) have low weights. Thus, by computing the
i = 1, 2, . . . , imax shortest paths from source vertex (s) to
target vertex (t), one can obtain the backbone. The value
of imax is determined by plotting the percent of total mass
moving through the paths as a function of i. Thereafter,
the derivative is computed to estimate how much flow is
added as the number of paths in the graph is increased,

and i = imax is chosen such that the derivative is close
to 0.

Figure 2a shows the backbone defined for the network
provided in Fig. 1, and demonstrates how fractures with few
particles on them have been removed. The corresponding
graph is shown in Fig. 2b and highlights how there are
no dead-end fractures on the backbone and no isolated
fractures. Moreover, there are some fractures where there
are lower numbers of particles, but are on a path where
the total number of particles is high. Thus, the backbone
accounts for dispersion and flow channelization of the
particles.

3Machine learning for DFNs

3.1 Problem definition

Our goal is to construct a mapping (8) that identifies back-
bone vertices without performing high-fidelity simulations
on the test networks once supplied with simulation data
from the training networks.

To ensure connected backbones, we classify simple paths
in the network instead of individual fractures. Recall that a
path in a graph was defined earlier as a sequence of vertices
so that the edges when taken in order connect the first and
last vertex in the sequence. A simple path is a path with no
repeating vertices (i.e., a sequence with distinct elements)
and the set of all simple paths from source to target is
denoted as GP . The concept of paths on graphs is inherited
from that of particle-trace on the corresponding DFN as was
described in Section 2.1.

Denoting the set of paths used to construct the backbone
as GBP , assign the label “1” to paths in GBP , and “0” to
those in GP − GBP .

To find the mapping analogous to Eq. 8 for paths, we
proceed in steps. First, transform each path p ∈ GP into a
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Fig. 2 a DFN backbone
identified for the network
provided in Fig. 1. b
Corresponding graph

(a) (b)

feature vector x ∈ R
NP (with length NP ) by the action of a

function φ(�).

φP : GP → R
NP , (9)

The features represent physical and graph-based properties
of the paths, and the ones used in this paper are discussed in
Section 3.2.

Next, construct a model function M(�), which assigns
probability of backbone membership corresponding to a
feature vector of a path. We explored random forest and
logistic regression models, which are detailed in Section 3.4.

MP : RNP → R, (10)

∀ x ∈ R
NP , MP (x) = Prob(φ−1

P (x) ∈ GBP ) (11)

Finally, define a threshold T > 0 and assign backbone
membership to paths with probability higher than T through
a function fP (�) as follows:

fP : GP → {0, 1}, (12)

∀ p ∈ GP , fP (p) =
{

1 MP (φP (p)) > T

0 else
(13)

Therefore, one has GBP = f −1
P ({1}). Knowing all the paths

(sequences of vertices/fractures) that comprise the set GBP

translates directly into information about all the fractures
that comprise the set GB , thus completing the description of
the backbone.

The backbone set is then the union of all vertices in the
selected paths, which is guaranteed to be connected because
every vertex will lie on at least one path from source to
target and all of the vertices on that path are assigned to the
backbone.

Computing all possible simple paths through the graph
representation of a DFN is combinatorially impractical
because the number of path combinations grows exponen-
tially. However, computing the first k unweighted shortest
paths is feasible, and the complexity scales as O(kn3) [70]

for a graph with n vertices. We confirmed that 97% of ver-
tices in the backbone are contained in the first 1000 shortest
paths through the graphs. To include all backbone vertices
requires roughly double the number of shortest paths. Given
that the increase in paths far outweighed the increase in
backbone vertices, we elected to use only the 1000 shortest
paths.

3.2 Feature selection

For every path p ∈ Gp, we use five features based
on individual vertex properties along that path to classify
backbone membership: degree centrality, betweenness
centrality, current flow betweenness centrality, and both
the arithmetic and harmonic means of permeability. The
values of degree centrality, betweenness centrality, and
current flow betweenness centrality are the sum of these
features computed at every vertex on the path; i.e., for a
vertex feature f (i), we calculate the path feature to be
�N

i=1f (i)/N for a path with N vertices. Analogously, the
cost of computing a feature is at most the sum of the costs
of computing the corresponding feature for each vertex on
the path. Next, we briefly describe each feature and why it
was selected. We tested additional features as well, such as
the attributes of quotient graphs corresponding to collapsed
paths, but they did not improve the quality of classification.

Degree centrality: The degree centrality of a vertex is
a normalized value representing the number of edges
touching a vertex. For a fracture in a network, it is an
indicator of the number of fractures that intersect it. High
degree centrality vertices tend to be at the core of the
network, while low degree centrality vertices are usually
on the periphery or the low flow branches. For a vertex i,
its degree centrality is given by:

D(i) = 1

n − 1

n∑
j=1

Aij , (14)
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where Aij is the ij th element of the adjacency matrix A

of the graph and n is the number of vertices in the graph.
The calculation of degree centrality has complexity
O(n2) since it can be realized as a matrix-vector product
of the adjacency matrix with a vector of ones.

Betweenness centrality: Betweenness centrality is a
global topological measure quantifying the extent to
which a vertex controls communication in a network by
estimating how frequently paths through the network
include a given vertex. Define a geodesic path as a path
(sequence of vertices connected by edges) between ver-
tices u and v with the fewest possible edges, and denote
the number of geodesics as σuv . Denote σuv(i) as the
number of geodesic paths through u and v that pass
through vertex i. Betweenness centrality is a normalized
metric that indicates the fraction of geodesic paths in G

that pass through vertex i:

B(i) = 1

(n − 1)(n − 2)

n∑
u,v=1,u�=i �=v

σuv(i)

σuv

(15)

Vertices with high betweenness centrality represent hubs
that many paths pass through, and represent either
highways or bottlenecks for the flow. For a graph with
n vertices and m edges, the computational complexity of
calculating the betweenness centrality scales as O(mn +
n2 log(n)) [71].

Current flow betweenness centrality: Source to target cur-
rent flow is a centrality measure based on an electric
circuit analogy, where every edge has unit resistance, a
unit current is injected at a “source” node, and the flow is
measured from source to target. Define the Graph Lapla-
cian as L = D − A, where D is a diagonal matrix
specifying the degree of each node. Denoting the pseudo-
inverse of L as L+, current flow centrality of a vertex is
the total amount of current that flows through the vertex.
The potential of the ith vertex is L+

is −L+
it , so the magni-

tude of the current through the edge that connects vertices
i, j is |(L+

is −L+
it )−(L+

js −L+
j t )|. To get the total current,

we use the ith row of the adjacency matrix A to sum over
all the edges that connect to vertex i, and thus the current
flow centrality:

C(i) =
n∑

j=1

Aij |(L+
is − L+

it ) − (L+
js − L+

j t )| (16)

This centrality measure can be modified by using an
adjacency matrix that is weighted by the resistance
of each edge. The computational complexity scales as

O
(
mn

√
k + mn log(n)

)
[72], where m, n, k denote the

number of edges, number of vertices, and the condition
number of the Laplacian matrix of the graph respectively.

Permeability: Another fracture feature is permeability,
which is related to the idea of “conductivity,” i.e., how

much fluid can flow through the material. In the language
of resistor networks, Rij = 1

kij
, where Rij is the

resistance of the ij th edge expressed as the reciprocal
of the edge permeability. In the representation that maps
fractures to graph vertices, the permeability of an edge
kij is given by the harmonic average of the permeabilities
(ki, kj ) of the two fractures along the edge. The harmonic
average is used since that is the equivalent permeability
of an edge that will transport the same flux under the
same pressure gradient. Note that, in this case, along
with the mean permeability along the path (defined as the
mean of the edge permeabilities along the path), we use
the harmonic average of the permeability along the path
as a feature too.

3.3 Classificationmetrics

The majority of simple paths and vertices in the backbone
makes up a small subset (roughly 4%) of the vertices
of the graph, i.e., the cardinality of GB is much smaller
than GN . While small backbones are advantageous for the
high-fidelity simulations, it makes for a highly imbalanced
classification problem for the machine learning algorithm.
This class imbalance means models will be biased toward
predicting “0” (membership of the set GN − GB ) and
still retain “high” accuracy without capturing the paths of
interest. To address this issue, we train the models for
precision and recall, which are more robust to imbalanced
datasets than the traditional sensitivity and specificity.

Define the paths (vertices) correctly predicted to belong
in GBP (GB) as “true positives” (TP), and paths (vertices)
predicted to be in GBP (GB) but are actually in GP −
GBP (GN − GB) as “false positives” (FP). The notion
of “false negatives” (FN) follows analogously. Precision is
given by:

p = TP

TP + FP
, (17)

and measures how many false positives were predicted
compared with true positives. Recall is given by:

r = TP

TP + FN
, (18)

and represents the total percentage of correctly predicted
backbone nodes.

The “F1-score” is a composite measure of both precision
and recall, being the harmonic average of the two. The
sensitivity of the harmonic average to low values ensures
that high scores can result only from classifiers with high
values of both precision and recall.

The classification problem is for paths; thus, these
measures for paths are immediately relevant, but our
eventual goal is the aggregate of the selected paths, i.e., a set
of fractures, hence we measure the precision and recall in
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terms of the fractures too, with the knowledge that the set of
fractures, realized as a union of paths, preserves the network
connectivity.

To validate the physical utility of the backbones, we also
compute the breakthrough curve for the full network, the
true backbone, and the predicted backbone. We expect that
the tail of the breakthrough curve for the predicted backbone
will lie between that of the true backbone and the full
network, since adding more nodes will capture more of the
particle flow than the backbone network.

3.4 Classification algorithms, data splitting,
and cross-validation

We used random forest and logistic regression models,
which are both very well-known algorithms for classifi-
cation, for the model function M(·) in Eq. 13. Moreover,
the random forest algorithm is based on decision trees,
while logistic regression is based on gradient descent; thus,
these two methods are representative of two different fam-
ilies of algorithms. Both algorithms are available in the
scikit-learn ensemble package [73].

We split our data in a standard way, where 80% is used
for training and 20% used for testing. Specifically, out of a
total of 100 networks, we randomly select 80 for training
and the remaining 20 are set aside for testing. Then, for
each of the 1000 simple paths for a network, 5 features
and a label are generated. The training set is further split
by 10-fold cross-validation, using the subroutines available
in scikit-learn, to train the hyperparameters of the
model for the best “F1-score.”

3.4.1 Logistic regression

Logistic regression is a generalized linear model used for
binary classification. If xi ∈ RNp is the feature vector for
path i, and Yi ∈ {0, 1} is the binary variable representing
backbone membership, then the probability of backbone
membership is expressed as:

P(Yi = 1|xi) = 1

1 + exp(β0 + βT xi)
(19)

where β is a vector of regression coefficients. β and β0 are
typically found by maximum likelihood estimation given
the training data. Logistic regression is implemented by
using Maximum Likelihood Estimation (MLE) which is
performed using a gradient descent algorithm. Maximizing
the likelihood function determines the parameters that are
most likely to produce the observed data. The coefficient
βk can be interpreted as the influence of the kth feature
on the log-odds of backbone membership. For example,
if βk = 5 then if the kth feature is increased by 1, the
log-odds of backbone membership are increased 5-fold.

Typically, a regularization parameter C is also added to
penalize misclassification, with smaller C corresponding
to a stronger regularization [74]. In cross-validation using
scikit-learn, we found C = 1.291.

3.4.2 Random forest

Random forests work by creating an ensemble of decision
trees, which then vote on new points to predict backbone
membership. Each tree in the ensemble is trained with a
subset of data points sampled with replacement from the
training data. Then, at each split in the tree, a random
subset of the features is used to determine the split [75].
The total number of features in the data is denoted by Np

(see Section 3), and in this case, Np = 5. The parameters
of interest are the number of trees in the ensemble,
n estimators, and the number of features to use at
each split in each tree, max features. We performed
cross-validation on a parameter range of n estimators
∈ [10, 50, 100, 200, 400, 500] and max features ∈
{Np,

√
Np, log2 (Np)}. The best parameters were found

to be n estimators = 100 and max features =
log2 Np features used in each split.

4 Results

4.1 Sample networks

In order to test the performance of the algorithm, we
chose to create semi-generic DFN with attributes based
on data from actual geological sites. While it is known
that macroscale network properties influence the flow field
strongly [32, 76], when the range of the length scale is
wide, it is challenging to link features of the fracture
network with observed flow and transport properties. Thus,
fracture networks that have fractures spanning a range of
length scales offer a good test case for determination of
flow channeling and backbone subnetworks. Hence, 100
independent, identically distributed realizations of a fracture
network were generated based on data from Bonnet et al.
[1] and Ouillon et al. [77]. The data is based on shear mode
II faults at geological locations on the western Arabian
plate where the bedrock is well exposed and composed
of sedimentary and volcanic rocks. Specifically, the study
focused on the homogeneous and uniformly thick Palezoic
platform and the Cambrian-Ordovician sandstones [77].

It is assumed that the overall domain is cubic, and each
edge has a length of 100 m. The fractures are circular with
uniformly random orientations, while fracture centers are
assumed to be sampled uniformly throughout the domain.
The fracture radii are sampled from a truncated power-
law distribution whose probability density function has an
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exponent of 2.1 and upper and lower cutoffs of 2 and 30 m
respectively.

Fracture apertures (measured in meters) are constant for
each fracture, but correlated with their radii through the
relationship b = 5 · 10−5 · √r [25]. This leads to variability
in hydraulic properties within the network. We require that
at least one set of fractures connects the inflow and outflow
boundaries in every realization. Isolated clusters that do not
contribute to the flow are removed. The networks have a
mean P32 value (fracture surface area over total volume)
of 0.13 (m−1) and standard deviation 0.03. There are 218
fractures on average, with a standard deviation of 60, in each
network, and there are multiple paths connecting the inflow
and outflow boundaries.

We identified backbones in the network using the FTG
methodology previously described. For these networks,
we found that we needed the first 40 paths in the FTG.
This backbone accurately captures first arrival and peak
breakthrough times. Figure 3 shows the breakthrough curve
from a single network (solid black line), the backbone
(dashed line), and 95% confidence interval of breakthrough
curves from the ensemble of networks. From the 100
realizations, 80 are selected for training, and 20 are set aside
for testing.

4.2 Classification performance

When we use random forest (RF) or logistic regression (LR)
to solve the classification problem described in Section 3,
the immediate result is an assignment of probability of
class membership for each item being classified. Although
the hyperparameters of the RF and LR models were tuned
by cross-validation to obtain the best “F1-score,” it is
more informative to list the precision and recall scores
separately and construct the PR curve (precision-recall

Fig. 3 Representative network from the ensemble showcasing
comparison of first arrival and peak breakthrough times for full
network and backbone derived from the FTG, with the 2.5 to 97.5
percentiles of times for full networks shown shaded. The abscissa
denotes time nondimensionalized by first passage time

curve). We compute PR curves based on the realizations
designated for testing alone. To be clear, for each of the
100 realizations, we consider 1000 labeled shortest paths
(mentioned in Section 3.1). The testing data comprises
20 realizations chosen out of the 100, and PR curves are
computed by comparing the predicted labels with the true
labels for each path. The threshold probability T that finally
decides membership in Eq. 13 is the user-defined parameter
that allows us to control precision and recall, and thus
indirectly, the extent of system reduction. By systematically
sampling values of the probability T ∈ [0, 1], precision
and recall are computed for each value, thus setting up
an approximate one-to-one correspondence between the
threshold probability T and the resultant precision p and
recall r . Thus, an optimal T can be chosen for a desired
value of p or r .

Since the classification problem is for paths, i.e., the
identification of the set GBP , these measures for paths are
immediately relevant, but our eventual goal is the aggregate
of the selected paths, i.e., a set of fractures; hence, we
measure the precision and recall in terms of the fractures
too, with the knowledge that the set of fractures GB , realized
as a union of paths, preserves the network connectivity.
The two PR curves obtained for these cases are shown in
Fig. 4. We emphasize that no fracture classification problem
is being solved—we are interpreting the results of the path
classification problem in terms of both paths GBP and
fractures GB . For the perfect classifier, i.e., one with a
precision and recall of hundred percent, the curve would
be horizontal at precision = 1 across every recall value,
but for real classifiers, curves close to the top right corner
are desirable. In general, the two algorithms perform very
similarly, with logistic regression having higher precision at
almost all recall values.

The resultant system reduction, measured as the number
of fractures in the backbone network as a percentage of
the full network, is shown in Fig. 5. The figure shows
that for a given recall, both methods yield backbones of
approximately similar size. For flow backbones, we are
most interested in high recall, i.e., minimizing the loss
of important fractures due to false negative classification,
and both algorithms show that small backbones of
approximately 30% size can be obtained even at very high
recall. It is worth noting that a random sampling of paths
out of the candidate set will sometimes generate high recall
values, but almost always have low precision, so it is notable
that both methods outperform a simple random sample. The
figure also shows the size of the backbone that would be
obtained by a hypothetical classifier with perfect precision
and recall. Both RF and LR yield backbones of comparable
size for values of precision and recall around 70%.

The size of the backbone directly informs us as to the
computational efficiency of high-fidelity simulations on it
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Fig. 4 The precision-recall (PR)
curves have been constructed for
the original path classification
problem in (a). The path
classification problem results in
identification of the set GBP that
comprises backbone paths. The
aggregate of the selected paths
in GBP yields a set of selected
fractures GB . Measures of
precision-recall for the derived
set of fractures are shown in (b)

(a) Paths (b) Fractures

in comparison with that on the full network. Based on prior
observations [41], one can estimate that a subnetwork that is
a fraction of the full network will require roughly the same
fraction of computational effort. Thus, the computational
efficiency gained will depend on the size of the subnetwork,
so that small subnetworks are accompanied by large
reductions in computational time, yielding as much as 80–
90% computational savings for subnetworks that are less
than 10% of the full network.

The use of random forest algorithm affords us, as
a by-product, values of feature importance. These are
shown in Fig. 6, and provide confirmation that while the
permeability associated with paths is the most important
feature, there are no superfluous features. In this context, it
shows a distinction between fracture classification and path
classification. In fracture classification [58, 59], the global
topological features were overwhelmingly dominant, to the
extent that the influence of fracture permeability as a feature
was negligible. However, in path classification, we see that

Fig. 5 Size reduction (the number of fractures in the backbone as a
percentage of the full network) as a function of recall for both random
forest and logistic regression. As recall increases, precision decreases;
hence, the backbone includes a larger number of fractures. The perfect
classifier is one that would produce neither false positives nor false
negatives, and this corresponds to the true backbone of the networks in
the test dataset

permeability does play an important role, albeit as a global
property associated with a path, as opposed to an individual
fracture. This insight into flow channeling in fracture
networks has emerged due to the fundamental change in the
way we posed our problem—as path classification rather
than fracture classification.

We now compare the performance of the algorithms
in more detail by examining the results for chosen recall
values of 50%, 80%, and 90% respectively. In Table 1,
we compare the system reduction through the number of
fractures and the number of degrees of freedom in the
mesh needed to simulate flow and transport on the obtained
backbone network. We note that for each recall value, LR
has greater network size, and the explanation for these
numbers lies in the threshold probability T that corresponds
to the recall. Thus for RF, values of T = 0.48, 0.19, 0.11
yield a recall of 50%, 80%, 90% respectively, but the
corresponding numbers for LR are T = 0.30, 0.09, 0.05.
Hence, more paths (consequently fractures) are selected
by LR to ensure the algorithm performance results in the
desired recall value, and this is directly reflected in Table 1.

The results thus far have focused on metrics that relate
to the classification problem, but the end goal is to examine
how well do the transport characteristics of the backbone
correspond to those of the full network. We do this
by comparing the breakthrough curves of the backbone
subnetwork produced by the classifiers with that of the full

Fig. 6 An estimate of feature importance for the path classification
problem obtained from the random forest classifier
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Table 1 Reduction measures for random forests and logistic regression
at 50%, 80%, and 90% recall thresholds. The precision-recall curves
for random forest and logistic regression were almost indistinguishable
from each other, and these numbers further emphasize the trend

Model Recall Network size Network size

(fracture) (%) (mesh) (%)

RF 50 8 16

LOG 50 12 22

RF 80 17 30

LOG 80 20 34

RF 90 20 34

LOG 90 23 38

network as well as the true backbone produced by a perfect
classifier. We expect adding more fractures will capture
more of the particle flow than the true backbone. Our
expectations are borne out by the trend in the breakthrough

curves as recall increases for both random forest and logistic
regression in Fig. 7a and b. As recall increases, precision
drops, so the number of fractures in the backbone increases
and it matches the full breakthrough curve better. When
comparing the breakthrough curves of random forests and
logistic regression for 50% and 90% recall in Fig. 7c,
again, we observe that the breakthrough curve of logistic
regression matches that of the full network better, and this
is due to the same reason mentioned earlier—that logistic
regression has a lower threshold probability for a given
recall, hence a larger backbone with greater fidelity.

For a quantitative estimate to support our visual
observations, the mean Kullback-Leibler (KL) divergence is
computed for the full ensemble of breakthrough curves of
the tested networks, measuring how close two probability
density functions are. The trends in Table 2 agree with what
has been seen already, namely, that as recall increases, the
corresponding values of the KL divergence with respect
to the full network decrease, indicating closer agreement.

(a) Random Forest (b) Logistic Regression

(c) Both

Fig. 7 An instance showing the breakthrough curves obtained from
the classifiers for 50%, 80%, and 90% recall for both random forest
(RF) and logistic regression (LR). The numbers in the legend indicate

the percentage value of recall. The breakthrough curves obtained from
the full network (legend DFN) and the true backbone which is the flow
topology graph (FTG) are also shown
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Table 2 Table showing KL divergence measures of breakthrough
curve of backbone with respect to breakthrough curve of full network
and that of the true backbone

Model Recall KL Div w.r.t KL Div w.r.t

full network true backbone

RF 50 0.25 0.12

LOG 50 0.17 0.09

RF 80 0.07 0.10

LOG 80 0.05 0.15

RF 90 0.05 0.15

LOG 90 0.04 0.21

However, the KL divergence with respect to the true
backbone does not show monotonic behavior because as
recall increases, more fractures are added to the backbone,
taking it away from the true backbone, but closer to the full
network.

5 Conclusion

The end goal of designing the machine learning for
backbone identification in discrete fracture networks is
system reduction for computational efficiency as well as
physical insight into the phenomenon of flow channeling.
There are various aspects to this problem, but the most
critical is the need to identify backbones that connect inflow
to outflow boundaries. In contrast to previous efforts in
this direction, such as [58, 59] which cannot guarantee
connected backbones because their fundamental unit of
selection is a fracture, we presented a novel perspective that
views a network as a union of connected paths comprising
a sequence of fractures. Thus, the fundamental unit of
selection in the machine learning algorithm is a sequence of
fractures, rather than individual ones, and the classification
process is based on attributes that characterize the sequence.
Unlike fracture classification, where the global topological
features were overwhelmingly dominant, to the extent that
the influence of fracture permeability as a feature was
negligible, in path classification, we saw that permeability
does play an important role, albeit as a global property
associated with a path, as opposed to an individual fracture.
This insight into flow channeling in fracture networks
has emerged due to the fundamental change in the way
we posed our problem—as path classification rather than
fracture classification. Moreover, this choice to classify
based on paths rather than individual fractures imposes the
aforementioned physical constraint that backbones need to
be connected. In this light, the proposed method is the first
physics-informed machine learning algorithm for backbone
identification within discrete fracture networks simulations.

One disadvantage of this method that carries over
from previous efforts is the computational expense of
the high-fidelity simulations to generate the training data.
Future work could examine the possibility of using low-
fidelity data from reduced-order models to further increase
computational efficiency. System reduction of DFNs using
machine learning thus paired with three-dimensional DFN
modeling is an efficient work flow, and lends itself to
robust uncertainty quantification and characterization of
subsurface flow and transport.
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