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Abstract Discrete fracture network (DFN) models are a powerful alternative to continuum models for
subsurface flow and transport simulations because they explicitly include fracture geometry and network
topology, thereby allowing for better characterization of the latter’s influence on flow and transport through
fractured media. Recent advances in high performance computing have opened the door for flow and
transport simulations in large explicit three-dimensional DFN, but this increase in model fidelity and system
size comes at a huge computational cost because of the large number of mesh elements required to
represent thousands of fractures (with sizes that can range several orders of magnitude, from millimeter
to kilometer). In most subsurface applications, fracture characteristics are only known statistically and
numerous realizations are needed to bound uncertainty in flow and transport in the system, thereby
exacerbating the computational burden. Graphs provide a simple and elegant way to characterize, query,
and interrogate fracture network connectivity. We propose a DFN model reduction framework where
various graph representations are used in conjunction with high-fidelity DFN simulations to increase
computational efficiency while retaining accuracy of key quantities of interest. The appropriate choice of a
graph representation, namely, which attributes of the DFN are to be represented as nodes and which ones
as edges connecting those nodes, depends on the relevant scientific questions. We demonstrate that the
proposed DFN model reduction framework provides an efficient means for DFN modeling through both
system reduction of the DFN using graph-based properties and combining DFN and graph-based flow and
transport simulations.

1. Introduction

Discrete fracture network (DFN) models incorporate the important effects of fracture structure and net-
work topology to better characterize their influence on flow and transport through fractured systems. In
the DFN methodology, each fracture in the network is assigned a shape, location, aperture, and orientation
by sampling distributions whose parameters are based on site characterization. Until recently, DFN mod-
els were limited to one-dimensional pipe network approximations (Cacas, 1990; Dershowitz & Fidelibus,
1999), two-dimensional systems (de Dreuzy et al., 2001, 2002, 2004), or relatively small three-dimensional
systems (Bogdanov et al., 2007). However, recent advances in high performance computing have opened
the door for flow and transport simulations in large explicit three-dimensional discrete fracture networks
(Berrone et al., 2013, 2015; Erhel et al., 2009; Hyman, Karra, et al., 2015; Hyman, Painter, et al., 2015;
Joyce et al., 2014; Mustapha & Mustapha, 2007; Pichot et al., 2010, 2012). In these methods, a mesh represen-
tation of each fracture in the network is created, and the flow equations are solved explicitly on the detailed
representation. DFN models are computationally expensive, but they play an important role in simulating
fractured subsurface systems since continuum models do not fully resolve the network structure which can
be a dominant factor in upscaled flow and transport properties such as breakthrough (Painter et al., 2002;
Painter & Cvetkovic, 2005).

This increase in model fidelity comes at a huge computational cost because of the large number of mesh ele-
ments required to represent thousands of fractures (with sizes that can range from millimeter to kilometer)
and properly resolve pressure at fracture intersections where gradients are highest. Figure 1 provides two
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Figure 1. (a) A DFN composed of around 100,000 fractures with 15 fracture families in three geological layers. (b) DFN
composed of eight fractures meshed with close to 90,000 nodes. DFN = discrete fracture network.

examples showcasing the magnitude of the cost of DFN simulations. The DFN representation of a field site
with layered stratigraphy shown in Figure 1a is a network made up of around 100,000 fractures drawn from 15
families with unique characteristics meshed with over 40 million nodes in a conforming Delaunay triangula-
tion. A close up of a smaller network is shown in Figure 1b where an eight-fracture DFN is shown along with the
mesh overlaying the network that contains close to 90,000 nodes. The planar representation of each fracture
is discretized using 100 to 1,000 spatial nodes with optional mesh refinement at the intersections to properly
resolve the high gradients in the flow field resulting from points of stagnation at intersection tips. This mesh
must be further refined if in-fracture plane variability is considered because the mesh resolution needs to be
sufficiently small to resolve correlations in the aperture field (Dreuzy et al., 2012; Makedonska et al., 2016).
In addition to this cost, typically thousands of realizations of the DFN model must be run to bound system
uncertainty stemming from variability in geophysical properties, for example, fracture network geometry and
topology, as well as hydrologic properties, for example, fracture permeability.

The key aspect that sets DFN modeling apart from continuum frameworks is the recognition that fracture
geometry and network topology play a critical role in determining flow and transport properties within frac-
tured media. The mathematical construct of a graph (a set of nodes connected by edges) is one way to isolate
this key aspect of DFN modeling. At the core of the DFN methodology is the conceptual model that a set
of fractures, which are discrete entities, intersect one another to form a network. The mathematical con-
struct of a graph G is another representation of this conceptual model. A graph consists of a vertex set V(G)
and an edge set E(G), where the edge set contains pairs of vertices indicating that the two vertices in the
pair are connected by an edge. There are multiple approaches for representing DFNs using graphs. How-
ever, many of these approaches seek to characterize the fracture network structure (Andresen et al., 2013;
Ghaffari et al., 2011; Hope et al., 2015; Santiago et al., 2014) or simulate flow and transport on the graph itself
(Cacas, 1990; Dershowitz & Fidelibus, 1999; Karra et al., 2018; Noetinger & Jarrige, 2012; Nordqvist et al., 1992).

The novelty of this paper is that we propose a DFN model reduction approach where various graph-based
methods are used in conjunction with high-fidelity DFN simulations to increase the computational efficiency
while retaining accuracy of key Quantities of Interest (QOI). We use four different methods—Shortest Path
Pruning, Machine Learning (ML) Pruning, Physics-based Pruning, and Corrected Graph Emulator—that our
team has recently developed, some of which have been previously published in this DFN model reduction
framework (Hyman et al., 2017; Karra et al., 2018; Valera et al., 2018), to compare and contrast these methods
in terms of accuracy and computational efficiency. Figure 2 provides an outline of the proposed DFN model
reduction framework and how these five methods are utilized. We begin with a DFN (1a) and create a graph
representation (1b). Then there is a junction in the proposed DFN model reduction framework. One can either
query the structure of the graph, identify a backbone structure in the graph (2a), then simulate flow and trans-
port on the corresponding DFN backbone (2b), or one can simulate flow and transport on the graph itself
(3a). The DFN backbone is obtained by pruning the graph and then mapping back to the underlying frac-
ture network. Our simulations through the approach (3a) show that the graph transport breakthrough times
are consistently larger than the high-fidelity predictions and we correct this bias in the transport times as
shown in (3b). In step (4), one then computes the QOI. In Figure 2, the QOI is solute transport times, that is,
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Figure 2. Schematic of proposed discrete fracture network model reduction framework. See Figures 7–9 for a closer view of the plots in steps (3b), (4), and (5),
respectively.

breakthrough curves and so in (4) we have shown breakthrough curves from four methods (Shortest Path
Pruning, Machine Learning (ML) Pruning, Physics-based Pruning, Corrected Graph Emulator) that we have
developed and compared them to the high-fidelity DFN simulation. Our framework also utilizes a multifi-
delity Monte Carlo method for uncertainty quantification that uses a combination of the high-fidelity DFN
and one or more of these four graph-based methods. This step is shown in (5) of Figure 2. The common

VISWANATHAN ET AL. 3



Water Resources Research 10.1029/2017WR022368

thread in the methodology that sets it apart from other graph-based frameworks is that both the graph-based
representation of a DFN and high-fidelity flow and transport simulations in the DFN are used and complement
one another.

A key feature of the method is selecting an appropriate graph representation for the QOI. We begin by
exploring two graph representations. In the first, each fracture is represented as a vertex and each fracture
intersection is an edge connecting the vertices, and we discuss how it is useful for questions regarding the
topological structure of the network. In the second, each intersection between fractures is represented by a
vertex and fractures are represented by a collection of edges. Hyman et al. (2018) recently provided a rigorous
mathematical exposition of these graph representations and showed that they are projections of a more gen-
eral bipartite graph representation. Then we demonstrate the utility of the proposed method by using these
graph representations to efficiently reproduce various features of the breakthrough curve, for example, first
arrival, peak arrival, and scaling behavior in the tail. For problems such as hydraulic fracturing or environmen-
tal remediation, the entire breakthrough curve is typically of interest in the measurement of production or
remediation efficiency. For nuclear nonproliferation problems, often it is only of interest to detect early mass
arrival of gas seepage from the subsurface. We demonstrate that through the appropriate choice of map-
ping and graph-based techniques, we can parameterize our reduced order models to accurately predict these
specific QOI with orders of magnitude higher computational efficiency than the high-fidelity DFN modeling
approach. This makes our approach ideal for uncertainty quantification methods.

The rest of the paper is structured as follows. Sections 2 and 3 are based on the two types of DFN to graph
mapping. The four graph-based methods that are either on the (2a, 2b) path or the (3a, 3b) path in Figure 2,
use one of these two mappings and are discussed in these two sections. Section 4 compares these four
methods against the high-fidelity DFN predictions in terms of accuracy and computational efficiency. A mul-
tifidelity Monte Carlo method for uncertainty quantification that builds on the high-fidelity DFN and these
four graph-based methods is described in section 5. Conclusions are drawn in section 6.

2. Topological Inquiries

We begin with a graph representation that captures the connectivity (topology) of the fracture network, where
fractures in the DFN correspond to a vertex in V(G), intersections between fractures correspond to an edge in
E(G), and the rule determining the end points of the edges is that the fractures corresponding to the vertices at
the edge endpoints intersect in the network. A mathematical formulation of this mapping between a fracture
network F and a graph G is the following. Let F = {fi} for i = 1,… , n denote a fracture network composed of
n fractures. We define a mapping, 𝜙, that transforms F into a graph G(V, E) composed of n = |V| vertices, and
m = |E| edges. For every fi ∈ F, there is a unique vertex ui ∈ V ,

𝜙 ∶ fi → ui . (1)

If two fractures fi and fj intersect, fi ∩ fj ≠ ∅, then there is an edge in E connecting the corresponding vertices,

𝜙 ∶ fi ∩ fj ≠ ∅ → eij = (ui, uj) , (2)

where (u, v) ∈ E denotes an edge between vertices u and v. One can also include source s and target t vertices
into G to incorporate flow direction. Every fracture that intersects the inlet plane x0 is connected to the source
vertex,

𝜙 ∶ fi ∩ x0 ≠ ∅ → esi = (s, ui) , (3)

and every fracture that intersects the outlet plane xL is connected to the target vertex t,

𝜙 ∶ fi ∩ xL ≠ ∅ → eit = (ui, t) . (4)

This choice to include boundary conditions via source and target nodes is essential if flow-based QOI, as
opposed to geometric or topological properties, are considered (Neuman, 2005).

Figure 3 shows an example of this mapping for the same eight-fracture network shown in Figure 1b. Vertex
colors here correspond to fracture colors in the DFN. The degree of each vertex (the number of incident edges)
in the graph indicates the number of intersections with other fractures in the DFN. Topological questions,
such as what is the fewest number of fractures a particle would have to pass through to get from one location
to another in the system, can be easily queried on this graph representation of the DFN.
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Figure 3. Topologically based graph representation of the eight-fracture
network shown in Figure 1. Vertices correspond to fractures and an edge
between two vertices indicates that the corresponding fractures intersect
in the d.

2.1. Topological Characterization
Using this mapping, or one that is similar, topological properties of the
fracture network are inherited by the graph as measurable properties
such as vertex degree, efficiency, clustering, betweenness, and commu-
nity structure (Andresen et al., 2013). Various studies have used this
mapping to characterize and study different aspects of fracture network
structure in two-dimensional (Andresen et al., 2013; Ghaffari et al., 2011;
Santiago et al., 2014) and three-dimensional (Aldrich et al., 2017; Hope
et al., 2015; Hyman et al., 2017; Valera et al., 2018) networks (both synthetic
and natural). Ghaffari et al. (2011) linked the sensitivity of flow proper-
ties in two-dimensional networks, for example, flow field profiles, to the
network structures. Andresen et al. (2013) used this mapping for quantita-
tive comparisons between real fracture networks and models generating
synthetic networks. Hope et al. (2015) showed how topological proper-
ties of the network, such as clustering (one measure of local connectivity),
are related to the growth mechanism by comparing different methods for

stochastic network generation. Sævik and Nixon (2017) included topological properties of two-dimensional
fracture networks into analytic expressions for permeability to account for network structure. Hyman and
Jiménez-Marttínez (2018) used this graph representation to aid in the investigation of the relative impact
of connectivity, geometric, and hydraulic heterogeneity on transport processes. Santiago et al., (2013, 2014,
2016) proposed a method of topological analysis that measured centrality properties of nodes in the graph,
which describes characteristics such as the number of shortest paths through a given node. Berrone et al.
(2015) used this graph representation to partition a DFN simulations for parallelized simulations to aid in load
balancing and minimize communications between processors.

2.2. Backbone Identification
Beyond characterizing topological properties of fracture networks, these graphs can be used to isolate the pri-
mary flow channels, also referred to as backbones, in the networks where the majority of flow and transport
occur. In this purely topological representation of a DFN, edges weights are uniform and do not depend on
in-plane geometry or hydrological properties, the shortest paths (the fewest number of edges) from source
and target nodes correspond to the fewest number of fractures between inflow to outflow boundaries in
the DFN. Hyman et al. (2017) used this concept to isolate subgraphs corresponding to the union of the k
shortest paths as possible backbones in the DFN. For verification of the method, they simulated flow and
transport on the subnetworks that corresponded to these subgraphs and compared it to transport through
the original network. The choice to return to simulating flow and transport in the DFN, rather than on a graph
representation is due to the inherent errors in simulating higher-dimensional systems with lower-dimensional
representations (discussed in detail in the next section). Figure 4 provides a summary of the method for the
ensemble of networks presented in section 4. Figure 4a shows a DFN and the identified backbone. Semitrans-
parent fractures in the network are those in the compliment of the backbone. Figure 4b shows the derived
graph of the network in (a) and the subgraph corresponding to the 20 shortest paths from the inflow boundary
(red node) to outflow boundary (blue node), where semitransparent nodes in the graph are those in the com-
plement of the backbone. Figure 4c presents a comparison of estimates for first particle arrival time through a
sample of 100 subnetworks (20 shortest paths) and their associated original network. The high R2 value (0.90)
indicates that the two are in good agreement. These subnetworks contain significantly fewer fractures than
the original network, which results in fewer degrees of freedom in the linear system of pressure and faster
solver convergence. Thus, the required time for meshing, flow, and transport simulations is drastically reduced.
In terms of total run time, simulating flow and transport through the k shortest paths subnetworks is over an
order of magnitude faster than running flow and transport on the original network, but these networks still
provide accurate estimates of first arrival times. For an application such as nuclear nonproliferation, first arrival
times are the main QOI since one needs to determine time of arrival of gases to the surface from an under-
ground test to determine if a test is nuclear or chemical. First arrival times are typically high in concentration
leading to the best chance of detecting an isotopic signature expediently. Since the fracture network charac-
teristics of a site will only be known statistically, fast simulations that can predict first arrival times accounting
for and exploiting the topology of the fracture network are needed. Identifying paths of least resistance,
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Figure 4. (a) Subnetwork and (b) subgraph corresponding to the 20 shortest paths from the inflow boundary (red node) to outflow boundary (blue node).
Semitransparent fractures in the network and nodes in the graph are removed. (c) A comparison of estimates for first particle arrival time through a sample of
100 subnetworks and their associated original network shows they are in good agreement. Meshing, flow, and transport simulation times on these subnetwork
are over an order of magnitude less than that required for the original network. Figure modified from (Hyman et al., 2017).

for instance using graph theory, and linking them to the fastest transport has also been performed in two and
three-dimensional heterogeneous porous media (Rizzo & de Barros, 2017; Tyukhova & Willmann, 2016).

While the method of Hyman et al. (2017) is useful for finding backbones where the fastest travel occurs, it
does not do well in identifying backbones that carry the majority of the flow. One way to resolve this prob-
lem is including flow and transport information into the graph as edge weights. Aldrich et al. (2017) used this
mapping to identify backbones in fracture networks by incorporating information from particle transport sim-
ulations. By setting the edge weights to be inversely proportional to the amount of mass (number of particles)
that passed between the two fractures, they constructed a weighted-directed graph that represented the flow
structure. Figure 5 shows an example of such a network, which is commonly called a flow topology graph
(FTG). Arrows on edges show the direction in the graph and indicate the direction of flow from one fracture
to another. Various metrics can be implemented on the FTG to find the weighted-shortest paths between

Figure 5. Path analysis on a flow topology graph (FTG). Flow and transport
on a discreet fracture network is represented by a weighted-directed graph
where the weights are inversely proportional to the amount of mass
transport passing from one fracture to another. Various metrics can be
implemented on the FTG to find the weighted-shortest paths between the
inflow and outflow boundaries (blue and red vertices respectively) and it is
highlighted here by the set of green edges. The fractures that correspond to
the vertices along this path are the backbone where a majority of transport
passes through the system.

the inflow and outflow boundaries (blue and red vertices, respectively)
and is highlighted here by the set of green edges. The fractures which cor-
respond to the vertices along this path are a backbone where a majority
of transport occurs. This method for backbone identification, however, is
computationally expensive because flow, transport, and postprocessing of
particle trajectories have to be performed.

To overcome this hindrance in the application of the method, Valera et al.
(2018) trained machine learning classifiers using these backbones to cre-
ate a more efficient workflow. Specifically, they trained two supervised
machine learning algorithms, support vector machines, and random for-
est, to classify individual fractures, here represented as vertices in the
graph, as being members of the backbone. The features used for classifica-
tion were a mix of global topological properties (betweenness centrality;
source-to-target current flow; and source-to-target simple paths), local
topological properties (degree centrality), geometric (projected volume),
and hydrological attributes (permeability). In contrast to the method of
Aldrich et al. (2017), which requires flow and transport to be performed
and can take several hours to run on a single network, once the clas-
sifiers are trained (in a matter of minutes), the supervised classification
can then be used to identify potential backbones in a matter of seconds.
The quality of classification can be measured using two metrics, precision
[True positives / (True positives + False Positives)] and recall [True positives /
(True positives + False Negatives)]. In general, there is a trade-off between
precision and recall, higher precision results in lower recall and vice versa,
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Figure 6. Hydrological-based graph representation of the eight-fracture
network shown in Figure 1. Black vertices correspond to intersections and
an edge between two vertices indicates that the corresponding fractures
intersect in the discrete fracture network (DFN). Edge colors correspond to
fracture colors in the DFN.

that can be controlled by adjusting the methods’ parameters. One can
reduce the number of fractures in the backbone with either method, (high
precision and low recall) but this resulted in poor predictions of travel
time distributions. On the other hand, fewer fractures can be removed by
including more fractures into the backbone, (low precision and high recall)
but the predictions of travel time distributions are better. A useful feature
of random forest is that it returns a measure of feature importance, which
is the ratio between the number of samples routed to a decision node
involving that feature in any of the trees of the ensemble over the total
number of samples in the training set. For backbone classification the most
important features were found to be topological (betweenness centrality,
source-to-target current flow, source-to-target simple paths, and degree
centrality) rather than the geometric or hydrological properties (projected
volume and permeability).

3. Hydrological Modeling

In this section, we explore a different mapping between DFN and graph
and discuss how it is useful for answering hydrological questions as
opposed to purely topological ones. In this mapping, intersections in the

DFN correspond to nodes in the graph and fractures are represented as a clique of edges. These traits allow for
geometric and hydrological properties to be inherited by the graph edges. Below we provide the mathemat-
ical formulation of this hydrologically based mapping between the fracture networks F and a G. Let F = {fi}
for i = 1,… , n denote a DFN composed of n fractures. We define a mapping, 𝜓 , that transforms F into a graph
G(V, E) composed of N = |V| nodes, and M = |E| edges. If two fractures fi and fj intersect, fi ∩ fj ≠ ∅, then there
is a node u ∈ V ,

𝜓 ∶ fi ∩ fj → u . (5)

that represents the line of intersection. Similarly, if fi intersects the inflow or outflow plane, then a node is
added to V that represents the line of intersection. If fi ∩ fj ≠ ∅ and fi ∩ fk ≠ ∅, then there is an edge in E
connecting the corresponding nodes,

𝜓 ∶ fi ∩ fj ≠ ∅ and fi ∩ fk ≠ ∅ → e(u, v), (6)

where e(u, v) ∈ E denotes an edge between nodes u and v. Under this mapping, each fracture in the network
is represented by a clique in G. Figure 6 shows an example of this mapping for the same eight-fracture network
shown in Figure 1b. Edge colors here correspond to fracture colors in the DFN and black vertices represent
fracture intersections.

3.1. Reduced Order Models of DFNs: Graph Flow and Transport Predictions
One important distinction between the mapping 𝜙 (equations (1)–(4)) and 𝜓 is that flow and transport
can be simulated on the graph created via 𝜓 . In fact, this particular mapping is similar to the one used in
conventional pipe-flow networks (Dershowitz & Fidelibus, 1999; Noetinger & Jarrige, 2012; Nordqvist et al.,
1992). Simulating transport in hydrologic systems is critical for numerous applications including ground-
water contamination (Cvetkovic et al., 2004; National Research Council, 1996; Neuman, 2005; O’Malley &
Vesselinov, 2014a), hydrocarbon extraction (Hyman, Jiménez-Martínez, et al., 2016; Karra et al., 2015), and
detection of underground nuclear explosions (Jordan et al., 2014). These applications often demand the use of
large-scale models making the simulation of transport computationally demanding (Lichtner et al., 2015), so
the use of computationally efficient graph-based models can provide significant benefits to techniques that
require a large number of model runs such as model calibration (Lin et al., 2017) or uncertainty quantification
(O’Malley & Vesselinov, 2014b).

Simulating flow and transport on the graph is a two-step process (Karra et al., 2018). The first step requires
solving a flow equation on the graph that produces something analogous to the velocity field in a stan-
dard (nongraph-based) computational hydrology approach. The flux from vertex u to vertex v is Quv =
wu,v(Pu − Pv) where Pu and Pv are the pressures at vertices u and v, respectively, and wu,v is a coefficient
that describes how readily the fluid can move from the intersection associated with vertex u to the inter-
section associated with vertex v. The edge weight wu,v is computed using geometric (length and aperture)
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and hydrological (permeability) properties of the DFN; details of various methods as to how these attributes
can be combined can be found in (Dershowitz & Fidelibus, 1999; Karra et al., 2018; Noetinger & Jarrige, 2012;
Nordqvist et al., 1992). Conservation of mass is enforced by summing the fluxes at a vertex and setting the
sum equal to zero, resulting in a set of linear equations for the pressures, which can be readily solved using
standard techniques from numerical linear algebra.

The second step is simulating transport using particle tracking. Particles move from one vertex to a randomly
chosen neighboring vertex that has a lower pressure in a flux-weighted fashion (i.e., the probability of going
from vertex u to vertex v is proportional to the flux from u to v) and complete mixing is adopted as opposed
to streamline routing (Kang et al., 2015; Park et al., 2003; Stockman et al., 1997). The travel time from one
vertex to another is computed assuming a straight line path between the centers of the two corresponding
intersections with a velocity that is proportional to the pressure difference. Each particle moves from a vertex
associated with the inflow boundary through a series of downgradient vertices until reaching a vertex asso-
ciated with the outflow boundary. During this process, the time to travel between vertices is accumulated to
finally produce a breakthrough time.

3.2. ROM Discrepancies
The graph-based model of transport provides a highly efficient means of simulating transport through frac-
tured hydrologic systems. Karra et al. (2018) compared simulation times in a variety of fracture networks and
observed speed up of up to 5 orders of magnitude. While the graph-based model is much faster than the DFN
model, it comes with a compromise in the accuracy of the breakthrough times. This graph representation is a
coarse representation of possible flow paths through the network, which can introduce biases in the transport
times from one fracture intersection to another. In particular, the simplified representation of in-plane fracture
geometry constrains the path that particle can take through the graph. In the full DFN, there are many paths a
particle can take from one intersection to another (each with variable velocity along the path), whereas in the
graph there are far fewer paths (each with constant velocity). Another discrepancy introduced by the graph
representation is that intersections, which are lines in the high-fidelity model, are represented as single ver-
tices in the graph. In the DFN, pressure can vary along an intersection, while in the graph, it cannot. In turn,
the distribution of velocities in the graph is much smaller than that in the DFN. An interesting limitation of
the graph model is linked to the construction of the graph. In the graph, flow on dead-end fractures (frac-
tures that only connect to one other fracture) is completely omitted by construction; there are no edges in
the graph that correspond to dead-end fractures. In two-dimensional fracture networks, these dead-end frac-
tures are no-flow regions and removing them does not influence flow and transport properties in the absence
of diffusion. However, in three-dimensional networks, there is flow in dead-end fractures due to local recircu-
lation, which are the result of pressure gradients along fracture intersections. These recirculation zones can
influence the tails of the advective transport time distributions and are particularly important if diffusion is
also considered. Finally, if in-fracture aperture variability is considered in the DFN model, it is not clear how to
properly upscale the variability into a single edge weight.

In small systems, the discrepancies between transport in the DFN and graph resulting from these issues appear
to be small. However, as the system size increases, so does the difference between the two models (Karra
et al., 2018). Nonetheless, these graph representations remain useful and are particularly powerful when com-
bined with high-fidelity simulations. Even though the graph-based model produces biased predictions for
large DFNs, these predictions can still be useful because they are highly correlated with the predictions of the
DFN model. That is, the two models have different means, but their variations around those means are sim-
ilar. This interesting property allows for the development of multifidelity techniques that combine DFN and
graph-based flow and transport simulations to yield accurate predictions of QOI with massive reductions in
computational costs. In this subsection, we describe a few recently developed methods for doing the latter.
A variety of alternative methods (e.g., Gaussian Process Regression, Quiñonero-Candela & Rasmussen, 2005)
could also be used for model reduction that may have different advantages depending on the context.

3.2.1. Physics-Based System Reduction
Even though the pressures on the graph are not identical to the high-fidelity DFN, they do exhibit the same
overall structure; the direction of flow and relative fluxes are consistent between the two models. This similar-
ity lends itself to another approach for system reduction of the DFN (backbone identification), one that is the
next logical step from the methods described in section 2, which used only topological information known
a priori. In this approach, one solves the flow equation only on the graph to perform the system reduction.

VISWANATHAN ET AL. 8



Water Resources Research 10.1029/2017WR022368

The flow solution on the graph (knowing the pressure at every vertex) defines a flux for each edge. Thus, one
can identify subnetworks with high flux values, where large amounts of mass transport should occur. This
yields a smaller, pruned network, and instead of then using the full network, this pruned network is used
for high-fidelity simulations. Hence, there is computational gain in each component of the simulation, viz,
network generation, meshing, flow simulation, and transport calculation. The smaller the size of the pruned
network, more is the gain. A straightforward way to find these subnetworks is applying a threshold param-
eter 𝜀 to a graph G and identifying the maximal subgraph (A maximal subgraph is a subgraph where there
does not exist a larger subgraph containing this subgraph) G′(V ′, E′) such that all of its edges e(u, v) have a
flux q(u, v) greater than the threshold,

if q(u, v)>𝜀 then e(u, v) ∈ E′, (7)

and
V ′ = {u} such that u ∈ E′, (8)

Then, as described in section 2, one can simulate flow and transport in the DFN that corresponds to G′. We
refer to this method as physics-based system reduction, because it takes physical observables into account in
the backbone identification. A similar method was proposed by Maillot et al. (2016), but they considered flow
on a high-fidelity DFN rather than on a graph representation.

The choice of 𝜀 determines how aggressive is the system reduction strategy and also influences the compu-
tational savings, that is, reduction in network size. One can adjust the value of 𝜀 so the discrepancies in the
breakthrough curves at a given percentile is within a specified tolerance, but still removing as much of the
network as possible. The most aggressive way to apply this methodology is to increase 𝜀 until the source and
target are disconnected, which is the critical flux value such that there is a connected path through the graph
such that all flux values are greater than this value. The fractures along this path would constitute another type
of backbone where the fastest transport occurs. However, one does not need to raise 𝜀 to this value. Smaller
values can be adopted and thus retain more of the network, and in turn retain better agreement between
a quantity of interest in the original network and the induced subnetwork. This particular method is useful
for cases where the full breakthrough curve is of interest, such as contaminant remediation or hydrocarbon
extraction, instead of just the first arrival time of the plume.
3.2.2. Training Graph Transport
Each high-fidelity DFN simulation contains a wealth of information about transport times from one fracture
intersection to another and corrections at this level can be used to improve the graph transport model. Karra
et al. (2018) capitalized on this information and used detailed Lagrangian information to correct for the bias in
the graph transport. They considered an ensemble of fracture networks with approximately 500 fractures each
and obtained detailed information about the trajectories in one member of this ensemble. They extracted
information about the fracture intersections that each particle passed through and how long it took to travel
from one intersection to another for over 1,000 particles in a single realization. Then, the travel time from one
intersection to another was used to improve the prediction of the same quantity in the graph transport model.
For each pair of intersections that a particle in the DFN model traveled through, a time tD was obtained and
compared to the travel time predicted by the graph model tG. They found that a power law relationship could
be used to improve the graph transport model prediction, tG, so that it more closely resembles tD,

tD ≈ Ct𝛼D (9)

where C has units of fractional time (t1−𝛼) and 𝛼 is the exponent that is estimated from the data. The exponent
is estimated by using linear regression of the quantities log tD and log tG.

Figure 7 shows the result of training on one high-fidelity DFN run, obtained from the ensemble described in
the next section. Time has been made dimensionless by dividing the breakthrough times by the median mass
breakthrough times in the DFN, colored blue. Note that while the pure graph transport model (orange) has
a significant bias, the version of the graph transport model that has been trained on a single DFN realization
(green) is able to predict the cumulative breakthrough curve much more accurately. The realization of the DFN
that was used to generate Figure 7 differs from the realization that was used to perform the training process.

4. Method Comparison

All of the previously described graph-based methods have unique advantages and disadvantages. In this
section, we compare and contrast them in the context of one of the primary quantities of interest in subsurface
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Figure 7. An example of the cumulative breakthrough curves predicted by
the DFN model (blue), the graph transport model (orange), and the graph
transport model that has been trained on one DFN realization (green). Note
that training on a single DFN realization substantially improves the accuracy
of the graph transport model’s predictions on the other members (such as
this representative example shown in green) of the ensemble.

flow and transport modeling, namely, solute transport times. For the
comparison, we construct a set of generic networks. We use the com-
putational suite dfnWorks (Hyman, Karra, et al., 2015) to generate the
fracture networks, solve the steady state flow equations, and determine
transport properties through the network. dfnWorks uses the feature
rejection algorithm for meshing (FRAM; Hyman et al., 2014) to gener-
ate three-dimensional fracture networks and the LaGriT meshing toolbox
(LaGriT, 2013) to generate conforming Delaunay triangulation of the DFN.
The parallelized subsurface flow and reactive transport code PFLOTRAN
(Lichtner et al., 2015) is used to numerically integrate the steady state gov-
erning flow equations. An extension of the WALKABOUT particle-tracking
method (Makedonska et al., 2015; Painter et al., 2012) is used to determine
pathlines through the DFN and simulate solute transport. Details of the
suite, its abilities, applications, and references for detailed implementation
are provided in Hyman, Karra, et al. (2015). The networks are composed of
circular fractures with uniformly random orientations. The DFN is in a cube
of side length 15 m. The fracture radii r [m] are sampled from a truncated
power law distribution with exponent 1 + 𝛼 and upper and lower cutoffs
(ru; r0). We choose 𝛼 = 2.6, a lower cut off r0 = 1 and the upper cut off

ru = 5. Fracture centers are sampled uniformly throughout the domain. There are 499 fractures in the net-
work. The networks are sparse, with a P32 value (fracture surface area over total volume) of around 2. This
ensures that networks are dense enough to have multiple paths connecting the inflow and outflow bound-
aries. Fracture apertures are constant for each fracture, but positively correlated with their radii through a
power law relationship, b = 𝛾r𝛽 , where 𝛾 = 5.0 × 10−5 and 𝛽 = 0.5 are dimensionless parameters (Bogdanov
et al., 2007; de Dreuzy et al., 2002; Hyman, Aldrich, et al., 2016; Hyman, Painter, et al., 2015; Joyce et al., 2014;
Wellman et al., 2009).

Within each fracture, we adopt the cubic law to relate the permeability of each fracture to its aperture. Flow
is driven through the network by applying a pressure difference of 1 MPa across the domain aligned with the
x axis. No-flow boundary conditions are applied along lateral boundaries, and gravity is not included in these
simulations. These boundary conditions along with mass conservation and Darcy’s law are used to form an
elliptic partial differential equation for steady state distribution of pressure within each network

∇ ⋅ (k∇P) = 0. (10)

Once the distribution of pressure and volumetric flow rates are determined by numerically integrating (10),
the methodology of Makedonska et al. (2015) and Painter et al. (2012) is used to determine the Eulerian
velocity field u(x) at every node in the conforming Delaunay triangulation throughout each network.

The spreading of a nonreactive conservative solute transported is represented by a cloud of passive tracer
particles, that is, using a Lagrangian approach. The imposed pressure gradient is aligned with the x axis, and
thus, the primary direction of flow is in the x direction. Particles are released from locations in the inlet plane
x0 at time t = 0 and are followed until they exit the domain at the outlet plane xL. The trajectory x(t; a) of a
particle starting at a on x0 is given by the advection equation, dx(t; a)∕dt = v(t; a) with x(0; a) = a where the
Lagrangian velocity v(t; a) is given in terms of the Eulerian velocity u(a) as v(t; a) = u. The mass represented
by each particle m(a) and the breakthrough time at the outlet plane, 𝜏(xL; a) of a particle that has crossed the
outlet plane, xL = (L, y, z) can be combined to compute the total solute mass flux F(t) that has broken through
at a time t,

F(t, xL) =
1
M ∫

Ωa

dm(a)𝛿[t − 𝜏(xL, a)], (11)

where Ωa is the set of all particles, M is the total mass put into the system, M =
∑

Ω m(a), and 𝛿 is the Dirac
delta function. Mass is distributed uniformly among the particles. Network generation, meshing, flow, and
transport simulations takes around 30 min using 16 cores per DFN.
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Figure 8. Comparison of breakthrough curves in backbones identified using
the shortest paths (section 2.2), machine learning based on the flow
topology graph (section 2.2), physics-based system reduction (section 3.2.1),
corrected graph transport (section 3.2.2) on a graph representation of the
full network and the full discrete fracture network.

For the comparison we consider the algorithm to find shortest paths
(section 2.2), machine learning based on the flow topology graph (section
2.2), physics-based system reduction (section 3.2.1), and corrected graph
transport (section 3.2.2) applied to one instance in the set of networks.
Figure 8 shows the breakthrough curves for each method; Shortest paths
(blue), Machine learning (yellow), Physics-based (green), Corrected graph
(red), and the original DFN (purple). Information about the network reduc-
tion is provided in Table 1. The plots of F(t, xL) are generated using a kernel

density transformation of the raw data (Silverman, 1982). Time has been
nondimensionalized by the peak breakthrough time of F in the original
DFN, t = t∕tpeak where tpeak = argmax

t
[F(t, xL)] .

Each of the curves displays different behavior relative to the original break-
through curve. The subnetwork corresponding to the shortest paths (20
shortest paths in this case) from source to target in the topological map-
ping match the first arrival time but quickly deviate. The spread of parti-
cles in this plume is also very narrow compared to the original network.
Recall that this is what the shortest paths algorithm was designed to do
—isolate the subnetwork where the fastest transport occurs. The subnet-
work identified by this method contains 27 fractures (≈5%) of the original
network and takes around 3 min for meshing, flow and transport simu-
lations, which is a factor of 10 speedup. Identification of the backbone

takes less than a second. The machine learning method (support vector machine) was trained on the flow
topology graphs of a subset of the networks, and details of the selected method parameters for the sup-
port vector machine are provided in Valera et al. (2018). The predicted breakthrough matches well at early
times, but then deviates. However, transport through the machine learning identified network provides a
good estimate of the peak arrival time but under predicts the peak dosage. Recall that the training data
for the machine learning algorithm seeks to find where the majority of flow goes. Flow and transport sim-
ulations on this network took around 7 min and yielded speedup of a factor of 4. However, note that this
speed up is biased because the construction of the training set requires that flow and transport simula-
tions be performed on a set of complete networks. Next, we apply the physics-based pruning method to
find a backbone. Here the backbone corresponds to a subgraph identified using the critical flux or criti-
cal threshold value as discussed above. Simulations on this subnetwork took around 5 min, a speedup of
a factor of 6. Transport through this subnetwork matches the earliest times well and a decent estimate for
peak breakthrough time but underestimates the peak dosage. Recall that this backbone corresponds to fast
paths in graph so the matching of the early times is expected. However, the distribution is much narrower
than the original network and the machine learning network, indicating a more uniform velocity field within
the network. Finally, breakthrough times in the corrected graph are in excellent agreement with the times
observed in the original network matching early, peak, and even tailing behavior. Simulation on the graph
takes a matter of seconds, a speedup of 3 orders of magnitude resulting from not having to mesh or per-
form flow and transport on the DFN. Similar to the machine learning backbone, this speedup time is biased
because meshing, flow, and transport have to be performed on at least one sample from the set of original
fracture networks to determine the correction factor in equation (9). However, since the premise of our

Table 1
Comparison of Subnetwork Properties and Approximate Speedup

Method Number of fractures % of original network Speedup factor

Shortest paths 27 5 10

Machine learning 145 29 4*

Physics-based pruning 167 33 6

Corrected graph 499 100 103*

Original DFN 499 100 1

Note. Asterisk * indicates that at least one training run on the original DFN is required.
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Figure 9. Breakthrough results from the Multifidelity Monte Carlo (MFMC)
method using high-fidelity discrete fracture network (DFN) and graph
transport emulator compared against standard Monte Carlo method. Ninety
percent confidence intervals are shown in both cases. Truth in this case is
based on large number of DFN realizations.

work is that we want to fit our algorithms in a UQ framework where
thousands of realizations are needed, the time for this training step is
insignificant when compared to the time taken to perform the flow and
transport calculations on all the realizations. For this reason, we have not
included this time in the speedup comparison.

5. Multifidelity Monte Carlo for Uncertainty
Quantification

In order to keep the computational cost low while reducing uncertainty
in predicting the QOI, we use a multifidelity Monte Carlo method built on
O’Malley et al. (2018) as the last step (step 5 of Figure 2) of our DFN model
reduction framework. Multifidelity Monte Carlo methods (Peherstorfer
et al., 2016) aim to exploit models of varying fidelity to estimate a statisti-
cal quantity of interest (such as the expected first or median breakthrough
time in the context of a hydrologic transport model). Since lower-fidelity
models are often much faster than high-fidelity models, there is a trade-off
in the Monte Carlo estimator between performing a small number of

costly-but-accurate model runs or a large number of inexpensive-but-biased model runs. These methods can
be used to provide an optimal balance for this trade-off in the sense that for a fixed computational cost,
the variance of the multifidelity Monte Carlo estimator is minimized by appropriately choosing the number
of high and low-fidelity model runs. It is also important to note that the multifidelity Monte Carlo estima-
tor is unbiased even if the lower-fidelity models are biased. The lower-fidelity models must have a good
combination of speed and correlation with the high-fidelity model in order for them to be effective within
this framework.

O’Malley et al. (2018) demonstrated that the graph flow and transport models meet this requirement and
therefore can be used as part of a multifidelity Monte Carlo method to produce unbiased estimates of quanti-
ties such as median breakthrough time. In this context, the multifidelity approach essentially utilizes the DFN
model to produce an unbiased estimator of the quantity of interest and then the graph-based model is used
to perform a large number of model runs. The combined effect is that for a fixed computational cost, the mul-
tifidelity Monte Carlo estimator is unbiased (like standard Monte Carlo), but has 2 orders of magnitude lower
variance. It is important to note that even for a very small number of high-fidelity DFN model runs that are not
fully representative of the ensemble, the multifidelity Monte Carlo estimator is unbiased. The unbiasedness is
a mathematical property of the estimator that does not require the high-fidelity model runs to fully explore
the parameter space (one realization of the high-fidelity model is enough to ensure the estimator is unbiased).
Figure 9 shows a comparison between the multifidelity Monte Carlo method and standard Monte Carlo to
estimate the breakthrough curve for particles advecting through a fracture network. Note that the confidence
intervals in this plot are confidence intervals for the two Monte Carlo estimators, so being tighter around
the truth is better. The multifidelity Monte Carlo method samples from both high-fidelity DFN and the graph
transport emulator discussed in section 3. The standard Monte Carlo refers to sampling realizations of the DFN
and using only the high-fidelity model to estimate the quantity of interest. The multifidelity estimator has a
tighter confidence interval around the truth because it could explore (and average out) more variability in the
system by using nine DFN model runs and 10,000 graph-based model runs. This is in contrast to the standard
Monte Carlo estimator which, for the same computational cost, could only explore 10 DFN model runs, leaving
it vulnerable to outliers and creating a large confidence interval. The contrast in confidence intervals for the
two estimators indicates that the multifidelity Monte Carlo method reduces the uncertainty in the estimate
despite the fact that both approaches had the same computational cost. The multifidelity Monte Carlo
approach that we use is not restricted to the graph transport emulator as the low-fidelity model but can be
used with any of the other methods discussed in sections 2 and 3. Additionally, this approach is not lim-
ited to just two models with differing fidelities but can be used for a combination of multiple high- and
low-fidelity models.

6. Conclusion

Modeling flow and transport through fractured systems is a challenge because representing thousands of
fractures and their intersections requires computationally intensive meshing, flow, and transport algorithms.
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Fractures are difficult to properly include in continuum formulations since they are often the primary flow
pathways and the topology and hydrological properties of a fracture network often dominate system behavior
but are smoothed out by the continuum assumption.

Graphs provide a simple and elegant way to characterize, query, and interrogate fracture network con-
nectivity. When used in a DFN model reduction framework with high-fidelity DFN, they provide a way to
characterize, query, and efficiently simulate flow and transport through fractured media. We proposed an
approach where various graph representations are used in conjunction with high-fidelity DFN simulations to
increase computational efficiency while retaining accuracy of key quantities of interest. We considered two
different mappings between fracture networks and graphs and showed each of them is useful for different
studies. Selection of the mappings depends on the quantities of interest, such as first arrival time of a solute
plume, topological properties, or if the entire breakthrough curve needs to be considered. When only the first
arrival times are of interest, a mapping that is based solely on topology can be used to determine shortest
paths through a fracture network. A computationally efficient pruned DFN predicts first arrival times that are
in good agreement with the original DFN and underscores that large-scale structure is the dominant factor
controlling where transport goes within the network. Predictions of first arrivals are critical for applications
such as nuclear nonproliferation. We also discussed that graphs can be used to increase the computational
efficiency of the full DFN through graph partitioning for parallel computations. Furthermore, they can be used
to identify backbones in high-fidelity simulations and topological characterization of fracture networks.

On the other hand, using a mapping that allows graph edges to inherit hydrological properties such as per-
meability and in-plane geometry can be used to simulate flow and transport in a computationally efficient
manner. These models have at least 3 orders of magnitude computational savings for a 500-fracture network
but exhibit systematic discrepancies from the full DFN. Karra et al. (2018) show that the speedup can go up
to 5 orders of magnitude for larger fracture networks. We discussed a method to correct this systematic dis-
crepancy to better match the high-fidelity DFN breakthrough curve. In most subsurface applications fracture
characteristics are only known statistically and numerous realizations are needed to bound flow and trans-
port in the system. The presented DFN model reduction framework provides an incredibly efficient workflow
to bound system behavior and quantify uncertainty by combining DFN and graph-based flow and transport
simulations. Furthermore, this mapping can also be used to prune the DFN using physics rather than topol-
ogy alone (as was used for the early arrival time case). This physics-based pruning can be used to generate
breakthrough curves that capture the behavior of the entire breakthrough curve as needed by applications
such as contaminant remediation or energy extraction where both early and late arriving mass is of interest,
while still reducing the size of the network considerably.

We also discussed applying a multifidelity Monte Carlo approach in our framework that combines the fast
graph-based reduction models with the high-fidelity computationally intensive DFN simulations. This method
is ideal for reducing the uncertainty in predictions for a fixed computational cost.

There are, however, aspects of DFN modeling that graphs are not well suited for. For example, the dimen-
sion reduction associated with graph-based flow modeling makes the inclusion of internal fracture aperture
variability challenging. Recent three-dimensional DFN modeling studies have shown that these effects can
influence upscaled system attributes such as effective permeability and transport times (Dreuzy et al., 2012;
Makedonska et al., 2016). While there are methods to include dispersion based on fracture roughness
(Nordqvist et al., 1992), they have yet to be benchmarked against fully resolved three-dimensional DFN
models.

Although for single-phase saturated flow through a fracture network, the graph emulator method provides
by far the greatest speedup (with at least 3 orders of magnitude) and best match to the entire breakthrough
curve, for more complex physics such as multiphase flow and reactive transport, we will have to revisit this
methodology. On the other hand, with the pruning-based methods, one can directly use the pruned DFN to
model complex physics without any modifications to the workflow, for example, using existing subsurface
simulators, while obtaining 1 to 2 orders of magnitude in speedup.

In conclusion, the ability of graphs to represent and characterize fractured systems makes them a powerful
tool for many applications. When paired with three-dimensional DFN modeling, they make it possible for a
much more efficient workflow that lends itself to robust uncertainty quantification and characterization of
subsurface flow and transport.
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