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Phase dynamics of nearly stationary patterns in activator-inhibitor systems
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The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase
dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic sta-
tionary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In
the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition
to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low
wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical
findings.

PACS number~s!: 05.45.2a, 45.70.Qj, 47.54.1r, 82.20.Mj
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I. INTRODUCTION

Studies of stationary patterns in activator-inhibitor sy
tems have focused primarily on localized structures such
pulses and spots in excitable and bistable media@1–8#, and
periodic patterns near a Turing bifurcation@9–11#. Localized
structures have instabilities to traveling patterns, breath
motion, and transverse deformations@2,12–14#. Periodic pat-
terns have been analyzed near the onset of a Turing inst
ity and also near the codimension-2 point of a Turing ins
bility and a Hopf bifurcation@15–19#. But very few studies
have explored instabilities ofperiodic ~nonlocal! stationary
patterns in excitable and bistable media, or of periodic s
tionary patternsfar beyond the Turing instability@20,21#.
The latter case includes pattern formation studies on
chlorite iodide malonic acid~CIMA ! chemical reaction
@17,22,23#.

In this paper we study instabilities of stationary period
patterns by deriving a Cross-Newell phase equation@24–26#.
The derivation is not restricted to the immediate neighb
hood of a Turing instability and applies to periodic patter
with space-scale separation that arise far from onset o
excitable and bistable media. The Cross-Newell equa
was originally derived in the context of fluid dynamics a
has recently been applied in a laser system@27#.

We choose to study the FitzHugh-Nagumo~FHN! equa-
tions, a canonical model for activator-inhibitor systems,

]u

]t
5u2u32v1¹2u, ~1!
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Here,u is the activator andv the inhibitor. The parameter
a0 and a1 can be chosen so that the FHN model~1! repre-
sents an excitable medium, a bistable medium, or a sys
with a Turing instability@13#. All three cases support station
ary periodic solutions ford sufficiently large.

In Sec. II we derive a phase equation describing we
modulations of a periodic stripe pattern in the FHN model.
Sec. III we evaluate stability thresholds for Eckhaus and z
zag instabilities and for a transition from stationary to tra
eling patterns. These thresholds suggest a number of sp
or spatiotemporal behaviors that we test in Sec. IV with n
merical solutions of Eqs.~1!.

II. PHASE EQUATION

Let u0(u;k)5u0(u12p;k), v0(u;k)5v0(u12p;k) be
a stationary periodic solution of Eqs.~1! with phaseu and
wave numberk. We consider weak spatial modulations
this periodic pattern and assume that these modulations
a length scaleL that is much larger than the wavelength 1/k.
The ratio of the length scalesl51/(kL) can then be used a
a small parameter to write modulated solutions as
asymptotic expansion about the periodic solution,

u~u,R,T!5u0~u;k!1lu1~u,R,T!1l2u2~u,R,T!1•••,

v~u,R,T!5v0~u;k!1lv1~u,R,T!1l2v2~u,R,T!1•••,
~2!

whereR5lr andT5l2t are slow space and time variable
The phaseu in Eq. ~2! is an undetermined function of spac
and time andk5uku5u“uu is the local wave number. Ou
objective is to derive an equation for the slow phase,
6471 ©2000 The American Physical Society
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Q~R,T!ªlu~r ,R,T!.

In terms of this phase the local wave vector is

k~R,T!5“RQ.

Inserting the expansions~2! in Eqs.~1! we find at order unity

u02u0
32v01k2

]2u0

]u2
50, ~3a!

e~u02a1v02a0!1dk2
]2v0

]u2
50, ~3b!

wherek25k•k. At orderl,

S k2
]2

]u2
1123u0

2D u12v15D]u0

]u
, ~4a!

eu11S dk2
]2

]u2
2ea1D v15D]v0

]u
, ~4b!

where

D5
]Q

]T
2“R•k22k•“R . ~5!

Projecting the right hand side of Eq.~4! onto (]uu0 ,
2e21]uv0), the solution of the adjoint problem, produc
the phase equation

t
]Q

]T
52“R•~kB!,

where

t5^~]uu0!2&2e21^~]uv0!2&, ~6!

B52^~]uu0!2&1de21^~]uv0!2&. ~7!

In these equationŝ(•)&ª(1/2p)*0
2p(•)du.

The quantitiesB andt contain information about variou
instabilities of the periodic stripe pattern. The conditi
(d/dk)@kB(k)#50 implies the onset of an Eckhaus instab
ity and the conditionB50 the onset of a zigzag instabilit
@25#. In Appendix A we show that the conditiont50 indi-
cates a transition to traveling waves.

To implement these conditions we need to solve Eqs.~3!
for the periodic solution (u0 ,v0). For parameter values tha
satisfye/dªm!1 an approximate solution can be comput
as shown in Appendix B. Using this solution to calculatet
andB, as shown in Appendix C, gives the following expre
sions:

t5
2A2

3pk
2

v2

qpkh
b~L2!g~L2 ,L1!,

~8!

B5
2A2

3pk
2

v2

qpkAm
b~L2!g~L2 ,L1!,
L21L15
2pAm

k
, ~9!

v1b~L1!1v2b~L2!50, ~10!

wherem5e/d,h5Aed,v65(612a0)/q2, q25a111/2,

b~x!5cothqx2cschqx, ~11!

and

g~L2 ,L1!5211 1
2 ~11a0!qL2cschqL2

1 1
2 ~12a0!qL1cschqL1 . ~12!

The quantitiesL1 and L2 denote the widths of domain
with high and low values ofu andv, respectively. The width
is measured with respect to the spatial coordinatez
5(Am/k)u ~see Appendix B!. Givenk, Eqs.~9! and~10! can
be solved forL1(k) and L2(k). Using these solutions in
Eq. ~8! graphs oft andkB as functions ofk can be produced

III. STABILITY THRESHOLDS

Explicit forms fort(k) andB(k) are available in the sym
metric case,a050, whereL15L25pAm/k:

t~k!5
1

pkhcq
3 S 12

hc

h
f ~pqAm/k! D ,

~13!

B~k!5
1

pkhcq
3 S 12

hc

Am
f ~pqAm/k!D ,

wherehc53/2A2q3 and

f ~x!5~12x cschx!~cothx2cschx!. ~14!

Figure 1 shows graphs oft(k) and kB(k) for a bistable
medium obtained with Eqs.~13! ~thick lines! and with Eqs.
~6! and ~7! using numerically calculated solutionsu0 ,v0
~circles!. A very good agreement is obtained within the v
lidity range of the analysis,k;O(Am)!1. Fork;O(1) the
deviations become large. In particular, the minimum
kB(k), which designates the Eckhaus instability threshold
not reproduced by the analytical form~13!.

The instability to traveling waves occurs att50 or at

e5hc
2f 2~pqAm/k!d21. ~15!

The zigzag instability occurs atB50 or at

e5hc
2f 2~pqAm/k!d. ~16!

The condition (d/dk)(kB)50 for the Eckhaus instability be
comes

d f

dxU
x5pqAm/k

50.

Consider first the limitk→0 in which the periodic pattern
approaches an array of isolated front structures. In this li
f (pqAm/k)→1 and the condition for the onset of travelin
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waves becomese5hc
2d21. This is precisely the nonequilib

rium Ising-Bloch~NIB! bifurcation point, where a stationar
front loses stability to a pair of counterpropagating fron
The condition for the zigzag instability becomese5hc

2d.
This is the threshold for the transverse front instability@28#.

The neutral stability curves for a bistable medium cor
sponding to Eqs.~15! and ~16! are shown in Figs. 2~a! and
2~b! for fixed d and e, respectively. They imply that high
wave number stationary planar patterns are stabilized ag
zigzag and traveling wave instabilities. Notice that ford
51 the neutral stability curvest50 andB50 coincide@see
Eqs.~15! and ~16! or Fig. 2~b!#. For d.1, upon decreasing
the wave number at constante, a high wave number patter
is destabilized to a zigzag pattern, whereas ford,1 the de-
stabilization is to traveling waves. Similar neutral stabil
curves are found for the nonsymmetric case,a0Þ0, for ex-
citable media, and for systems~far! beyond the Turing insta
bility.

IV. COMPARISONS WITH NUMERICAL SOLUTIONS

We have computed numerical solutions of Eqs.~1! to test
the stabilization of zigzag and traveling wave instabilities
high wave numbers. Figure 3 shows a low wave num
zigzag pattern and a high wave number planar pattern c
puted for the same parameter values. This behavior is
known in other contexts@29#. The zigzag instability is a
mechanism by which the system locally increases the w
number. Figure 4 shows coexistence of a low wave num
traveling wave and a high wave number stationary patte
These numerical results are for a bistable system but sim
results are found for excitable and Turing unstable syste
Coexistence of stationary and traveling waves has b
found in experiments on the CIMA reaction@17,23# and ana-
lyzed using different theoretical approaches@20,30,31,21#.

We have also tested the condition for the Eckhaus in
bility in a bistable system using numerical computations ot
andB. Choosing wave numbersk.kc wherekc corresponds
to the minimum ofkB, we found that initial periodic pattern

FIG. 1. Typical functionst(k) and kB(k) for a bistable me-
dium. The curves represent the functions of Eqs.~13!. The circles
are numerically computed solutions using Eqs.~6! and ~7!. The
point kB50 indicates the boundary between stable station
stripes and zigzag patterns. Att50 the pattern becomes unstable
traveling waves. Parameters:a154, a050, e50.001, d52.0.
.
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collapse either to uniform states or to a lower wave num
pattern through phase slips. Figure 5 demonstrates these
cases. Similar conclusions hold for excitable systems.
unstable Turing pattern, on the other hand, always conve
to a lower wave number pattern since the single unifo
state is unstable.

V. CONCLUSION

We have shown that the Cross-Newell phase equa
provides a powerful tool for studying instabilities of statio
ary periodic patterns in activator-inhibitor systems. T
equation contains information not only on the Eckhaus a
zigzag instabilities, but also on the destabilization of statio
ary periodic patterns to traveling waves. The same equa
applies to bistable, excitable, and Turing unstable syste
Equations of that kind should prove useful in identifyin
parameters and initial conditions where zigzag and Eckh
instabilities couple to traveling wave modes. Such coupl
may lead to complex spatiotemporal behavior analogou
the coupling of the NIB front bifurcation to a transverse fro
instability @28,32#

y

FIG. 2. The neutral stability boundaries for the zigzag instabi
(B50; thick curve! and traveling wave instability (t50; thin
curve! in ~a! the e-k parameter plane, and~b! the d-k parameter
plane. To the left of theB50 curve, planar periodic patterns ar
unstable to zigzag patterns. To the left of thet50 curve, planar
periodic patterns are unstable to traveling waves. Parametersa1

52, a050, e50.01,d52.
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APPENDIX A: THE MEANING OF tÄ0

We show here that the conditiont50 defines the critical
value of e at which traveling solutions bifurcate from th
stationary solution. We look for traveling solution
u(u),v(u) of Eqs.~1!, whereu5kx2vt, that bifurcate from
the stationary solution branchv50 at somee5ec . Near the
bifurcation wherev!1 we can expand the traveling solu
tions as power series inv around the stationary solutio
u0 ,v0:

u~u!5u0~u!1vu1~u!1•••,

FIG. 3. Coexistence of zigzag and planar patterns. The d
areas indicate regions ofu.0 and the light regionsu,0. At higher
wave numbers~a! the planar stripe solution is stable. At low wav
numbers~b! the planar solution is unstable and forms a zigz
pattern. Parameters:a152, a050, e50.05, d52.
2

. v~u!5v0~u!1vv1~u!1•••. ~A1!

Expandinge as

e5ec1e1v1••• ~A2!

and using these expansions in Eqs.~1!, we find at orderv

S k2
]2

]u2
1123u0

2D u12v152u08,

ecu11S dk2
]2

]u2
2ea1D v152v082e1~u02a1v02a0!.

rk

FIG. 4. Coexistence of traveling waves and stationary waves
high wave number~a! the patterns are stationary and at low wa
number~b! they travel. Parameters:a152, a050, e50.03, d52.
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Projecting the right hand side onto (u08 ,2ec
21v08) gives

ec5
^v08

2&

^u08
2&

, ~A3!

where we used Eq.~3b! and switched to the notation of
prime for the derivative with respect to the single argum
u. Using the definition~6! of t and Eq.~A3! we find

t5S 12
ec

e D ^u08
2&. ~A4!

Thus,t50 impliese5ec or the onset of traveling solutions

FIG. 5. Time evolution of a periodic pattern in the region
Eckhaus instability. The high wave number pattern is unstable
converges to either one of the uniform states~a! or a lower wave
number pattern~b!. Parameters:a152, a050, d52; top: e50.01,
bottom:e50.1.
t

APPENDIX B: APPROXIMATE STATIONARY SOLUTION

For m5e/d!1 a singular perturbation approach can
used to approximate the stationary solutionu0(u),v0(u).
Rescaling the space coordinate asz5(Am/k)u, Eqs.~3! be-
come

u02u0
32v01mu0950,

u02a1v02a01v0950,

where the prime now denotes the derivative with respect tz.
Since the small parameterm multiplies the second derivative
term u09 , two types of spatial regions can be distinguishe
outer regions whereu0(z) varies on a scale of order unit
and the termmu09 is negligible, and inner regions wher
u0(z) varies on a very short scale of orderAm and the term
mu09 cannot be neglected. In these regions, however,v0

hardly changes.
The analysis of the inner regions leads to the solution

u056tanh
u

A2k
, v050. ~B1!

These solutions represent front structures separating
types of outer regions: domains of high activator valuesu
5u1(v0) ~‘‘up state’’!, and domains of low activator value
u5u2(v0) ~‘‘down state’’!, whereu6(v0) are the extreme
roots ofu02u0

32v050. We look for periodic stationary so
lutions with wavelengthL5L21L1 , whereL1 and L2

are the widths of up and down states, respectively. Cons
now a down state spanning the spatial range2L2,z,0
followed by an up state spanning the range 0,z,L1 . The
equations forv at these outer regions are

v092q2~v02v2!50, 2L2,z,0, ~B2!

with the boundary conditionsv0(2L2)5v0(0)50, and

v092q2~v02v1!50, 0,z,L1 , ~B3!

with the boundary conditionsv0(0)5v0(L1)50. In obtain-
ing these equations we approximatedu6(v0)5612v0/2.
This approximation is particularly good for bistable med
with a0 small anda1 relatively large. These values restrictv0
to a small range aroundv050. For excitable media and sys
tems undergoing Turing instability, a large value ofd might
be needed to keepv0 small.

The solutions to Eqs.~B2! and ~B3! are

v05
v2

sinhqL2
@sinhqz2sinhq~z1L2!#1v2 , ~B4!

for 2L2,z,0, and

v05
v1

sinhqL1
@sinhq~z2L1!2sinhqz#1v1 , ~B5!

for 0,z,L1 . To determineL6 for a givenL we match
the derivatives ofv0 at the front positions,

v08~01!5v08~02!, v08~L1!5v08~2L2!.

d
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This leads to the relation

v1b~qL1!1v2b~qL2!50,

whereb(x) is given by Eq.~11!.

APPENDIX C: CALCULATION OF t AND B

The quantitiest and B are given by Eqs.~6! and ~7!.
Consider first the integral

^u08~u!2&5
1

2pE0

2p

u08~u!2du.

It has a contribution from two inner regions atz50 andz
5L1 whereu0 is given by Eq.~B1!, and a contribution from
two outer regions,2L2,z,0 and 0,z,L1 , whereu0
5212v0/2 andu0512v0/2 with v0 given by Eq.~B4! and
Eq. ~B5!, respectively.@Recall thatz5(Am/k)u.#

The contribution from the two inner regions is

^u08~u!2& inner5
1

2pk2Einner
sech4S u

A2k
D du

'
1

A2pk
E

2`

`

sech4x dx5
2A2

3pk
.

We have used here the fact thatk;O(Am)!1. The integral
over a narrow inner region is transformed into an integ
over a wide region after stretching theu variable to thex
5u/A2k variable. The contribution from the two outer re
gions is
ys

hy

. E
l

^u08~u!2&outer5
Am

8pk S E
2L2

0

v0~z!82dz1E
0

L1

v0~z!82dzD ,

where we used in the two outer regionsu0(z)852 1
2 v0(z)8.

Altogether,

^u08~u!2&5
2A2

3pk
1

Am

8pk S E
2L2

0

v0~z!82dz

1E
0

L1

v0~z!82dzD . ~C1!

The second term on the right hand side of Eq.~C1! is small
~sinceAm!1) and will not contribute to the leading orde
forms of t andB.

Consider now the integral

^v08~u!2&5
1

2pE0

2p

v08~u!2du.

The contribution from the inner regions to this integral
negligible form!1. Thus

^v08~u!2&5
Am

2pk S E
2L2

0

v0~z!82dz1E
0

L1

v0~z!82dzD .

~C2!

Using the solutions~B4! and ~B5! in the integrals~C1!
and~C2! and using the expressions fort andB we obtain the
expressions~8!.
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