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The threshold model can be used to generate random networks of arbitrary size with given local properties
such as the degree distribution, clustering, and degree correlation. We summarize the properties of networks
created using the threshold model and present an alternative deterministic construction. These networks are
threshold graphs and therefore contain a highly compressible layered structure and allow computation of
important network properties in linear time. We show how to construct arbitrarily large, sparse, threshold
networks with �approximately� any prescribed degree distribution or Laplacian spectrum. Control of the spec-
trum allows careful study of the synchronization properties of threshold networks including the relationship
between heterogeneous degrees and resistance to synchrony.
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I. INTRODUCTION

Discovering and modeling the structure of biological, so-
cial, and technological networks has been the subject of in-
tense research in recent years. This activity has been fueled
by the increasing availability of large experimental data sets
and the discovery that real networks share common topologi-
cal properties that are quite different from classic random
networks. The network structure, encoded in the links
�edges� between nodes, is important for many applications
including gene transcription regulation and protein interac-
tion �1�, strategies for the control of epidemics �2,3�, under-
standing network robustness against failures or deliberate at-
tack �4�, and discovering communities in social systems �5�.
Many real-world networks display an approximate power-
law degree distribution p�k��k−�, typically with 2���3
�6�, and also tend to have high clustering with low diameter,
a structure labeled “the small world effect” �7�. The results
on modeling the structure of networks using these two de-
scriptions and others are reviewed in Refs. �8–12�.

Global properties, such as the diameter and size of the
largest component, have dominated structural analysis of net-
works. With the increasing availability of a wide array of
more detailed experimental data sets and accompanying so-
phisticated network models, attention has now focused on
distributions of local statistics such as degree �number of
edges at a node�, clustering �number of triangles�, and
degree-degree correlation �propensity for nodes of degree k
to connect to nodes of similar degree�.

Most models for the creation of networks with a specific
degree distribution, clustering, or other statistical properties
are growth models where nodes and edges are added to cre-
ate the desired features in the limit of a large number of
nodes �6,12�. These models are in contrast to “static models”
such as the classic Erdős-Rényi random graph �13� or the
configuration model �8� and generalization to networks with
a given expected degree sequence �14�, where a fixed num-
ber of nodes, N, is specified and edges are connected be-
tween them randomly. More recently, an interesting class of

static models has been developed that can generate networks
with statistical properties similar to growing network models
�15–19�. These models assign a real variable xi to each node
i which is termed the “node weight,” “intrinsic fitness,” “hid-
den variable,” or “propensity to form edges.” In general
form, such hidden variable models assign node weights ran-
domly from a specified probability density function ��x� and
then assign edges between nodes i and j with another prob-
ability given by a symmetric function f�xi ,xj�.

A preferential attachment method for building networks
with the addition of a node fitness parameter was presented
in Ref. �12�. A static model using node intrinsic fitness was
then used to study data packet transport through scale-free
networks �15� and the size of connected components in a
model with a discrete set of node fitness values �18�. Further
studies showed that scale-free networks could be constructed
from node fitness models even if the distribution of node
weights was not scale free �16,17�.

In the general setting of random networks constructed
from hidden variables, one focus has been the derivation of
statistical properties of the network in terms of the distribu-
tion of node fitness and the probability of connected nodes
�19,20�. Note that static models can always be put into a
network growth framework if the node weights are assigned
during a growth process.

In this paper, we further analyze the threshold model stud-
ied in Refs. �16,19,21�. The threshold model creates random
networks through specification of a density function ��x� for
independently assigned weights on nodes xi, i=1, . . . ,N, and
a threshold value �. Once node weights xi have been as-
signed, each possible edge �xi ,xj� �i� j� is created if xi+xj

��. Here we show that the threshold model creates networks
that exactly meet the definition of a threshold graph in the
graph theory context �22,23� and we call the resulting net-
works “threshold networks.” These threshold networks dis-
play many novel properties.

In Sec. II, we discuss the basic structure of threshold net-
works. We summarize the predictions of distributions of net-
work structure measures for the threshold model in the limit
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of large network size. We exploit their highly compressible
layered structure to derive compact representations. We then
show how to construct arbitrarily large, sparse, threshold net-
works with �approximately� any prescribed degree distribu-
tion. In Sec. III, we describe the fast computation of many
relevant measures of network structure, including the La-
placian spectrum and eigenvectors. This allows us to con-
struct arbitrarily large, sparse, threshold networks with �ap-
proximately� any prescribed Laplacian spectrum. We then
use these tools to provide insights into the dynamics on
threshold networks, in particular when dynamic coupling is
of diffusive type so that the Laplacian spectrum is relevant.
Control of the spectrum allows careful study of diffusive
dynamics and synchronization properties, including the rela-
tionship between heterogeneous degrees and resistance to
synchrony. Section IV provides a summary and conclusions.

II. THRESHOLD NETWORKS

In this section we review some properties of threshold
networks and some previous results from studies of the
threshold model. We present a compact description of thresh-
old networks and a deterministic algorithm for creating
threshold networks with a chosen degree distribution.

A. Properties of threshold networks

Threshold networks have been studied extensively in the
graph-theoretic literature �24,25� with reviews in Refs.
�23,26�. They belong to the chordal, cochordal, comparabil-
ity, cocomparability, interval, split, and permutation graph
classes ��27�, p. 23�. In threshold networks, the neighbor-
hoods of nodes are nested �i.e., include the neighbors of ev-
ery lower-degree node�, and the graph can therefore be par-
titioned into groups of identical nodes according to this
nesting. We use this partition to provide a compact notation,
which we call the creation sequence, for storing and manipu-
lating these networks.

The structure of a threshold network is uniquely deter-
mined �modulo relabeling of nodes with the same degree� by
its degree sequence �23,28�. It is worth noting that threshold
networks are not the only networks with this property. Also
note that the degree sequence restricts the number of nodes,
while the degree distribution would not.

Threshold networks include many common networks such
as the star �one hub connected to many points� and complete
graph. They also include networks with a wide range of
properties. For example, the density, or fraction of possible
edges present, for a connected threshold network ranges over
all possible values from 2/N �stars� to 1 �complete graphs�.
As we will show, for large N we can create a threshold net-
work with any approximate degree distribution. In addition,
threshold networks have the interesting property that the La-
placian spectrum consists solely of integers �28�. The pri-
mary restriction in terms of network properties seems to be
the extremely small diameter �when connected�, which is at
most 2. In addition, the threshold nature results in a nested
neighborhood structure. That is, the set of neighbors of each
node is a subset of the neighbors of every higher degree

node. This rigid structure may seem unrealistic as a model
for real networks. But they certainly occur as important sub-
networks containing hubs of real networks: the prototype
hub, the star, is a threshold network. Furthermore, networks
that are similar but not exactly threshold in nature may be
approximated in many situations by the threshold networks
they mimic. For example, models where the probability of
attachment between nodes depends in a smooth way on the
sum or product of node weights can produce networks very
similar in structure to threshold networks. Finally, network
properties other than diameter can be engineered quite flex-
ibly and quickly. This allows us to determine the impact of
these network properties.

B. Threshold model

The threshold model generates a threshold network of N
nodes each with a weight chosen randomly from a distribu-
tion ��x�. Edges are then formed for any pair of nodes �i , j�
for which xi+xj �� for some threshold value �. The network
structure is completely determined by the choice of ��x� and
�. Without loss of generality we can take �=1, although
sometimes it is easier to vary � rather than scale the weights
x.

The degree correlations and clustering of the threshold
model in the large-N limit were analyzed in Ref. �19�. Ma-
suda et al. �21� demonstrated that many forms of the density
function lead to power-law degree distributions with expo-
nent 2. We review these results here briefly.

Let the cumulative distribution function for weights be
R�x�=�−�

x ��x�dx. Then the expected degree for a node with
weight x is given by

E�k�x� = �N − 1��1 − R�� − x�� . �1�

Letting k̃=k / �N−1�, we obtain an approximation for the de-
gree distribution P�k�,

P�k̃� = ��x�
dx

dk̃
=

��x�
��� − x�

=
�„� − R−1�1 − k̃�…

�„R−1�1 − k̃�…
. �2�

This distribution is computed for a number of forms of the
density function. Two results are worth special attention.
First, power-law distributions arise for large k �on the order
of N� when density functions decay more rapidly than power
law. Second, a power-law density with exponent a+1 yields
a power-law degree distribution with exponent �a+1� /a.
Thus to obtain a power-law degree distribution with specified
exponent �, one should arrange ��x� to be power law with
exponent

a + 1 =
�

� − 1
.

Unfortunately, finding the density function which pro-
duces a given degree distribution involves solving the inte-
gral equation

P„�N − 1��1 − R�� − x��…��� − x� = ��x� , �3�

with P�·� known and ��·� �and thus R�·�� unknown. This
equation is nonlinear for most interesting distributions. Thus,
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while we know how to generate certain specific power-law
distributions, there is no formulation for general distribu-
tions.

The threshold model thus joins the collection of random
network generation methods that produce realizations which,
in the limit of large networks, approach a desired degree
distribution. One distinct advantage of this model is that it
provides analytical insight, fast algorithms, and concrete
construction without assuming any lattice or hierarchical
symmetry.

C. Creation sequence

Threshold networks can be described very compactly by
what we call a “creation sequence” S: a binary string that
provides a recipe for construction by reading the sequence
from the left and adding one node for each digit. There are
two types of nodes: dominating nodes, denoted by a 1, and
isolated nodes, denoted by a 0.

For any given binary sequence, construct a corresponding
threshold network as follows: reading the sequence from left
to right, for each digit in the creation sequence a new node is
added to the existing network with connectivity determined
by its type. A dominating node 1 is connected to all nodes
already in the network, and an isolated node is added without
connecting it to the existing network. At the end of this con-
struction, each dominating node will be connected to all the
nodes that preceded it �to the left� in the creation sequence
and to all dominating nodes to its right in the creation se-
quence. Correspondingly, each isolated node 0 will be con-
nected only to the dominating nodes to its right. This nota-
tion is ambiguous for the leftmost node, so by convention the
leading bit is assigned 1. It is clear from this construction
that the set of all 1 nodes forms the maximal clique, that the
set of all 0 nodes is connected only to nodes in the maximal
clique, and that neighborhoods are nested from low degree to
high degree. For example, the creation sequence 10001 rep-
resents the star S5, 11111 represents the complete graph K5,
and 10101 and 10000101 represent the networks in Figs. 1�c�
and 1�d�.

The creation sequence description of a threshold network
is equivalent to the weight formulation �specifying node
weights xi and a threshold ��. That is, given node weights
and a threshold, we can obtain the unique creation sequence
which describes the corresponding threshold network. Con-
versely, given a creation sequence we can find a set of node
weights and a threshold which produce the corresponding
threshold network. We proceed to a proof of the first state-
ment, postponing the proof of the converse to later in this
section.

An algorithm for obtaining the creation sequence from a
sorted list of node weights, x1�x2� ¯ �xN, with a thresh-
old value � constructs the creation sequence from right to left
as follows. First consider the sum x1+xN of the largest and
smallest weights in the list. If x1+xN��, then node 1 will
not connect to any of the remaining nodes on the list. That
means that the node is an isolated node, so prepend a 0 to the
creation sequence and discard the lowest weight from the
list. If x1+xN��, node N will connect to all the remaining

nodes. Thus it is a dominating node, so prepend a 1 to the
creation sequence and discard the largest weight from the
list. Repeat this process with the new largest and smallest
weights on the list. When only one weight remains, this node
connects to all nodes with larger weight and no nodes with
smaller weight. It is both dominating �a member of the
clique� and isolated �only attaches to nodes in the clique�. By
convention for this node we use a leading 1 to complete the
creation sequence. The connectivity imposed by the weights
is precisely that of the resulting creation sequence as de-
scribe above.

FIG. 1. �Color online� Some threshold networks and corre-
sponding creation sequences. �a� Star with representation S
=10001. �b� Complete graph K5 with representation S=11111. �c�
Network with representation S=10101. �d� Network with represen-
tation S=10000101. The creation sequence consists of dominating 1
nodes and isolated 0 nodes and is read from left to right. In �a� one
dominating node is connected to four isolated nodes, one of which,
appearing first in S, is technically both dominating and isolated and
by convention denoted 1.
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In the absence of additional structure, networks are gen-
erally incompressible; i.e., nearly all N-node graphs require
O�N2� bits in any lossless representation. The obvious binary
nature of the creation sequence provides storage for thresh-
old networks, which requires at most N bits. We will show
that this compact storage also facilitates computation of
many network properties. The algorithms presented here
work directly with creation sequences, so there is no over-
head for retrieval. The transformation from node weights to
creation sequence involves sorting the weights and thus
O�N ln N� time. Indeed calculating network properties �such
as the degree� also requires sorting the node weights. So it is
much more efficient in storage and algorithmic speed to store
network connectivity in creation sequence form than via
node weights. Our algorithms assume the network is pre-
scribed by a creation sequence.

Adjacent bits in S of the same type represent nodes iden-
tical in connectivity. If node labeling is not needed, an even
more compact representation C can be obtained by com-
pressing run lengths of similar node types. This is done by
counting how many adjacent bits are the same starting from
the left. The counts are then listed C
= �D1 , I1 ,D2 , I2 , . . . ,Dn , In� where Dj is the number of domi-
nating nodes in the jth group of 1’s and similarly Ij is the
number of isolated nodes in the jth group of 0’s. Thus the
creation sequence S=11000110 has compact representation
C= �2,3 ,2 ,1�. Note that the first number always represents
dominating nodes. As examples, C= �1,3 ,1�, C= �5�, C
= �1,1 ,1 ,1 ,1�, and C= �1,4 ,1 ,1 ,1� denote the four net-
works in Fig. 1. For some network properties, the algorithms
are actually faster when exploiting a compact creation se-
quence, allowing the computation of network properties of
multimillion node dense or sparse threshold networks on a
modern desktop computer.

The high compressibility of threshold networks derives
from two facts: �i� groups of adjacent nodes in the creation
sequence with the same type are identical �up to node rela-
beling�, and �ii� connectivity is fully determined by a se-
quence of length �N. This observation motivates a visual
framework �based on the proof of theorem 1.2.4 in Ref. �23��
that more clearly exposes the underlying network structure.

We call the visual framework a layer-cake description of
the network and an example is shown in Fig. 2. The frame-
work, or cake, is made up of multiple layers, each filled with
two groups of identical nodes. The right side is filled with
dominating nodes while the left is filled with isolated nodes.
Moving from left to right in C, we place nodes from bottom
to top of the cake with layer j having Ij nodes on the left side
and Dj nodes on the right. The top left layer consists of
degree zero nodes �which are sometimes not considered as
part of the network�, and the remainder is a connected net-
work with each dominating group forming a complete sub-
network connected to all nodes below that layer. Nodes in
each isolated group connect only to nodes in the dominating
groups from layers above. The network shown in Fig. 2 has
C= �2,4 ,3 ,6 ,5 ,1 ,1�. Note that the network visualization in
Fig. 2 shows how much clearer the structure becomes when
depicted instead by the layer-cake diagram.

We now prove the converse of the connectivity equiva-
lence between node weights and creation sequences stated

above. That is, we show that from a creation sequence we
can construct a set of node weights and a threshold so that
the corresponding threshold networks are the same. Note that
this set of node weights is not unique for a given network.
Starting from a compact creation sequence C with n layers,
assign identical node weights to each node by group starting
with x=1 for the In nodes in the upper left group of the layer
cake, moving down the left side and then up the right in-
creasing the weight by 1 for each group. The upper right
group has Dn nodes each with node weight x=2n �the total
number of groups�. Setting the threshold to be �=2n+1 then
ensures that the node weight threshold criterion for edges
produces exactly the connectivity of the layer cake �and thus
the creation sequence�.

D. Custom degree distributions

In addition to randomly created networks based on the
threshold model, we now show how to construct arbitrarily
large, sparse, threshold networks with �approximately� any

FIG. 2. �Color online� Two representations of a threshold net-
work with the compact creation sequence C= �2,4 ,3 ,6 ,5 ,1 ,1�.
Top: layer-cake depiction of the network showing the structure of
the network by different node types. The layers are numbered from
bottom to top with the isolated nodes �small squares� on the left and
the dominating nodes �small circles� on the right. Ovals represent
complete subgraphs for the surrounded nodes while rectangles are
groups of isolated nodes that are not connected to each other. Lines
between the node group outlines mean that all nodes in each group
are connected to all nodes in the other group. Bottom: a two-
dimensional layout of the network.
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prescribed degree distribution or Laplacian spectrum. A gen-
eralization of this problem to vertex hidden variable models
with scale-free degree distributions was studied in Ref. �17�.

Let pk be a discrete degree distribution that is normalized
so that �kpk=1. The goal is to construct a threshold network
with approximately N nodes and with node degrees follow-
ing the degree distribution pk. The maximum degree kmax
must be less than N, and the number of nodes with degree k
should be nk= �Npk�. The construction strategy involves first
creating a specific degree distribution realization 	nk
 from
the discrete distribution. The resulting degree sequence need
not be graphical since our algorithm adjusts the number of
nodes and edges slightly to be able to build a threshold net-
work.

We build a threshold network with approximately this dis-
tribution by using isolated �0� nodes to fill out the degree
distribution and dominating �1� nodes to keep the network
connected and distinguish between isolated nodes of differ-
ing degrees. With this construction, we create N isolated
nodes and kmax dominating nodes. While the number of
nodes is thus larger than N, for large sparse networks it is
close to N. Similarly, there will be a small number of nodes
�the kmax dominating nodes� of very high degree. These will
generally affect the connectivity of the network but they do
not alter the degree distribution very much for large net-
works.

As a simple example consider the degree distribution
�1,2,3,5� which we will assume is chosen from a given pk.
Starting at the highest degree k, we create nk isolated nodes
followed by a single dominating node. The highest degree in
the distribution is 4 of which there are 5 nodes so the se-
quence starts with 100001 �the first node in the creation se-
quence is always 1, but it will be treated as an isolated node
for this construction process�. Descending in degree with the
same algorithm we find the creation sequence S
=100001000100101 or C= �1,4 ,1 ,3 ,1 ,2 ,1 ,1�. The corre-
sponding threshold network has 15 nodes instead of 11, and
the degree distribution is �1,2,3,5,0,0,0,1,0,0,1,0,1,1�, which
has 4 nodes of degree higher than 4 that do not exactly match
the original degree distribution. While these few extra nodes
certainly influence the connectivity or topology of the net-
work, they do not significantly affect the degree distribution
in the limit of large networks.

More complicated threshold network examples can be
generated by following the same construction procedure with
nk given by a prescribed distribution. The general compact
creation sequence alternates one dominating node with nk
isolated nodes from k=kmax to k=1: C= �1,n�kmax�−1,
1 ,n�kmax−1� ,1 ,n�kmax−2� ,1 , . . . ,1 ,n1 ,1�. For example, if the
nk’s are produced by a Gaussian function, the threshold net-
work has an approximately Gaussian degree distribution as
shown in Fig. 3. If the nk’s are from a power-law function,
then the threshold network has a power-law degree distribu-
tion �Fig. 4�.

Networks created with this method have high clustering
and low assortativity �negative degree-degree correlations�.
Every isolated node has a clustering coefficient equal to 1 so
the average clustering is more than N / �N+kmax�. Since the
lowest-degree nodes are connected only to the highest-

degree nodes and this pattern continues through the layer
cake, the networks are disassortative. This method can also
be used to construct networks with approximately any La-
placian spectrum using the connection between the spectrum
and the degree distribution described in Sec. III B.

We turn now from construction of threshold networks to
description of computation of network properties including
dynamics where coupling occurs over the threshold network.

III. STRUCTURE, SPECTRUM, AND SYNCHRONIZATION

In this section, we describe algorithms for fast computa-
tion of many network properties, including both local struc-
ture measures such as clustering and degree and global struc-
ture measures such as betweenness centrality and the
Laplacian spectrum. We then examine implications for net-
work synchronization with diffusively coupled oscillators.

A. Fast computation

We now describe a series of algorithms for fast computa-
tion of network properties. Most algorithms start with the
creation sequence, so we note that the algorithm for obtain-
ing the creation sequence from a sorted list of weights de-
scribed in Sec. II C is linear in the number of nodes. The
degree of each node is obtainable in linear time from the

FIG. 3. �Color online� The degree distribution P�k� for a thresh-
old network that is approximately Gaussian. The threshold network
was generated as described in the text with the degree distribution
given by nk=ae−��k − c� / w�2

for k=1, . . . ,20, a=1000, c=10, and w
=4.

FIG. 4. �Color online� The degree distribution P�k� for a thresh-
old network that is approximately a power law. The threshold net-
work was generated as described in the text with the degree distri-
bution given by nk=ak−2.5 for k=1, . . . ,20 and a=2000.
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creation sequence. In addition, the Laplacian spectrum, clus-
tering, and betweenness centrality can be similarly calculated
in time linear in the number of nodes.

Following are some algorithms for computing statistical
properties of threshold networks for a given creation se-
quence. For brevity, we introduce the notation

ND = � Dj, D�
+ = �

j��

Dj, I�
− = �

j��

Ij, N�
− = �

j��

�Dj + Ij� .

(a) Degree. The degree of an isolated node at level � is
simply k=D�

+. The degree of a dominating node at level � is
k=ND+ I�

−−1. As an example, the network in Fig. 1�d� has
C= �D1 , I1 ,D2 , I2 ,D3�= �1,4 ,1 ,1 ,1�, so the �ordered as in C�
degree sequence is �2,2,2,2,2,6,1,7�.

(b) Triangles. The number of triangles for an isolated
node at level � is D�

+�D�
+−1� /2. The number of triangles for

a dominating node at level � is made up of �ND−1��ND

−2� /2 triangles in the clique and � j��Ij�Dj
+−1� triangles

formed with isolated nodes. The example network in Fig.
1�d� has triangle sequence �1,1,1,1,1,5,0,5�.

(c) Betweenness centrality. Betweenness centrality is the
number �or fraction� of shortest paths which pass through a
given node excluding paths for which the node is an end-
point. If more than one path has the same length, the count is
split between them. The relevant shortest paths in a threshold
network are always length 2, go through a dominating node,
and have an isolated node at one end. Thus, isolated nodes
have zero betweenness centrality. For dominating nodes, be-
tweenness is the same within each layer. The betweenness
B�+1 for dominating nodes in layer �+1 is computed from
the formula B1=0 and

B�+1 = B� +
I��I� − 1�

D�
+ +

2I��N�
− + D��

D�
+ . �4�

The first term appears because all paths through lower domi-
nating nodes have the same path length as paths through this
node. In fact, the only paths through this layer’s nodes that
are shorter than paths through lower dominating nodes have
one end in the previous layer’s isolated nodes I�. The second
term represents all paths from nodes in I� to other nodes in
I�. The third term represents paths from nodes in I� to each
node in other groups below layer �+1. The second and third
terms are divided by D�

+ to account for shortest paths of the
same length that go through dominating nodes above level �.
The example network in Fig. 1�d� has betweenness sequence
�0,0,0,0,0,10,0,22�.

B. Laplacian spectrum

The Laplacian spectrum can be calculated easily from the
degree sequence and has some unique properties. If Aij are
the elements of the adjacency matrix of a network, then the
�combinatorial� Laplacian is defined as L=D−A where D is
the diagonal matrix of degrees �the sum of the rows of A�.
The Laplacian of a network is useful for modeling diffusion
processes which move through edges. If a time-varying sca-
lar field u�i , t� is assigned to the nodes of the network and
spreads via diffusion, the equation governing this motion

might be ut= f�u�−Lu. Notice that the conventional sign for
L is opposite to that for the continuous Laplacian operator.
The Laplacian spectrum of a network is the matrix spectrum
of L.

The Laplacian spectrum for a threshold network is en-
tirely made up of integers, and it can be determined imme-
diately from the degree sequence via transposition of the
Ferrer diagram �25,29,30�. The Ferrer diagram �Fig. 5� is a
visual depiction of the sorted degree sequence where the de-
gree k of each node is represented by a stack of k squares.
The eigenvalues are found by transposing this diagram or
simply counting the number of squares in each of the N
rows. Note that the top row will always be empty �ki�N�;
hence, zero is always an eigenvalue. It corresponds to the
constant eigenvector since the sum of each row of L is zero.
In fact there is an eigenvalue �=0 for each connected com-
ponent of the network and the corresponding eigenvectors
are constant on each component.

The eigenvectors are only slightly more difficult to obtain
than the eigenvalues. Threshold networks are constructed by
combining groups of nodes as shown in the layer cake using
the two binary graph operations of union and join. Unions of
two networks take the union of the node and edge sets. Joins
of two networks take the union and then add edges from each
node of one network to each node of the other. Using the
layer cake we can form an expression of unions and joins
which completely characterizes the network. First notice that
each dominating group is a complete subnetwork, while each
isolated group is a stable �self-isolated� subnetwork. Using
notation from the compact creation sequence, the network
can be constructed layer by layer starting at the bottom. At
step j join the current network with a complete graph on Dj
nodes. Then union the network with Ij isolated nodes. This
formulation of the network construction process allows us to

FIG. 5. �Color online� The Ferrer diagram for the degree se-
quence �6,4,2,2,2,1,1�. Each column has a number of squares to
match the degree of a node. Because this degree sequence repre-
sents a threshold network, the spectrum for the Laplacian can be
obtained by counting squares in each row to get �7,5,2,2,1,1,0�.
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build the eigenvectors of the network because the effect of
these operations on eigenvectors is understood �30�.

Notice that each row of the Laplacian matrix is associated
with a node. The elements of the eigenvectors are similarly
associated with a node. Assume that G is connected, and
denote the constant eigenvector as x0 �note that it is associ-
ated with the single zero eigenvalue�. Let X�G� denote the
remaining N−1 orthogonal eigenvectors. The following ob-
servations were attributed in �30� to the Laplacian “folklore”
and can be readily checked using matrix manipulation of the
Laplacian matrix.

�i� When a network G is joined or unioned with another
network, the eigenvectors can be extended to the new larger
network by assigning zero values at all nodes not in G.

�ii� The spectrum of the union of two networks G1 and G2
with respective number of nodes N1 and N2 is the union of
the spectra of the individual networks. The eigenvectors con-
sist of the vector x0, extensions of X�G1� and X�G2� and an
eigenvector xN1+N2−1 that identifies the networks. This latter
eigenvector, which we call the identifier eigenvector, is cho-
sen to have entries −N2 for each node in G1 and N1 for each
node in G2. Thus it is orthogonal to the other eigenvectors �is
constant on the nodes of each of G1 and G2� and has associ-
ated eigenvalue �N1+N2−1=0.

�iii� The join of two networks G1 and G2 with number of
nodes N1 and N2 is only slightly more complicated. The
eigenvectors are the same as for a union. The associated
eigenvalues are increased by the number of edges added to
each node in that network. That is, the eigenvalues associ-
ated with X�G1� increase by N2 and those of X�G2� increase
by N1. The identifier eigenvector xN1+N2−1 has associated ei-
genvalue N1+N2.

These results follow from the definitions of join, union,
Laplacian, and eigenvector and can be checked via straight-
forward calculation.

We now describe the simultaneous construction of the
spectrum and eigenvectors. Start with the complete graph
KD1

. Take as its eigenvectors x0 and D1−1 mutually orthogo-
nal vectors which are also orthogonal to x0. Standard �and
simple� choices are shown in Fig. 6. Other orthogonal
choices can clearly be used as well. Note also that the sub-
graphs on the left side of the layer cake are initially isolated
�KI1

c � with the same eigenvector structure as KI1
, but zero

eigenvalues.
Each union and join operation involves forming new

eigenvectors as described in �ii� and �iii� above and either
�unions� retaining the eigenvalues or �joins� adding to each
eigenvalue the number of nodes in the other network. As an
example, the Laplacian and eigenvector matrix for the net-
work in Fig. 2 appears in Fig. 6.

The resulting spectrum is actually much simpler than the
construction process and can be computed quickly as fol-
lows. Each isolated node contributes an eigenvalue equal to
its degree. The leading node in S contributes the zero eigen-
value. All other dominating nodes contribute an eigenvalue
one more than their degree. Thus, to compute the spectrum,
we need only compute the degrees.

The degree distribution is thus very similar to the Laplac-
ian spectrum for threshold networks. There is a shift up by 1

for large values. The shift starts at the node with weight xi
just above half the threshold xi�� /2. This near correspon-
dence between degree distribution and spectrum is conve-
nient for designing networks with a given spectrum �Sec.
II D� and seems to be generally true for networks which are
close to, but not quite, threshold in nature.

C. Synchronization

Synchronization of networks of oscillators has been stud-
ied in various contexts �31–36� with the basic framework
described in Ref. �32�. A common intuition is that networks
with small diameter or small average path length should be
easier to synchronize �31,32,35,36�. Threshold networks pro-
vide an excellent counterexample: we can easily construct
networks that are arbitrarily hard to synchronize and have a
diameter of 2. Moreover, threshold networks show that resis-
tance to synchrony can vary greatly with fixed average path
length and is not related to maximal betweenness centrality.
It is related to the heterogeneity of degree through the range
of degree values though not the variance of degree.

FIG. 6. The matrix of column eigenvectors of the Laplacian for
the network shown in Fig. 2. Blank entries indicate zero value.
Boxes have been placed around the entries describing groups of
identical nodes. Eigenvalues for each eigenvector appear at the bot-
tom of each column. Below them are the degree and node type for
nodes in the group identified by the eigenvector. Notice that domi-
nating nodes have degree one less than the corresponding eigen-
value while for isolated nodes the spectrum and degree are equal.
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Consider a system of N identical oscillators with state
vector field u�t� where solutions with ui�t�=uj�t� for all
nodes i and j are defined as synchronized. The system is said
to be synchronizable if a synchronized solution is linearly
stable to nonuniform perturbations. A standard linear analy-
sis near the synchronized solution shows that for general
oscillators with diffusive coupling the stability of the syn-
chronized state is determined by the largest Lyapunov expo-
nent 	���, also called the master stability function
�32,37,38�. If 	��i��0 for each i
2, the synchronized state
is linearly stable. �The eigenvalue �1=0 corresponds to spa-
tially uniform perturbations.�

For many oscillatory systems the master equation is nega-
tive only in a single interval ��1 ,�2� determined by the type
of oscillator and strength of coupling. This implies that the
network is synchronizable only when the ratio r��N /�2
��2 /�1 �32�. Thus if �2 and �N are inside this interval—i.e.,
r��2 /�1—then network synchronization is stable. Con-
struction of a synchronizable network is easier for small r.
To make a network resistant to synchronization, we design
the connectivity so that r, the resistance to synchrony, is
large.

The explicit representation of the spectrum of threshold
networks allows us to design networks with large r. Any
threshold network with N nodes and creation sequence end-
ing in 101 has diameter two and r=N. Figure 7 shows the
effect of adding 101 to the end of the creation sequence for a
random 100-node network created with the threshold model.
This change increases the resistance to synchrony. In both
cases, the nodes are initially only slightly perturbed from the
synchronized state. That state is clearly unstable when the
network is made resistant to synchronization. This small
change in network structure is enough to push the system
over the stability boundary for the synchronized state. Thus

our construction produces a network that is arbitrarily hard to
synchronize despite a small diameter.

More generally, the resistance to synchrony, r, can be de-
rived for threshold networks explicitly. The largest eigen-
value �N for a connected threshold network is the number of
nodes, N. The eigenvalue �2 is the minimal degree in the
network. That is, �2=Dn where n is the number of layers so
that Dn is the number of dominating nodes in the top layer.
Combining, we obtain r=N /Dn. Notice that this ratio does
not depend on most of the creation sequence.

We can design networks with prescribed resistance to syn-
chrony without limiting many other structure measures such
as the average path length, maximal betweenness centrality,
or degree variance. For example, consider maximal between-
ness centrality and connected threshold networks with three
node groups �two layers� and C= �D1 , I1 ,D2�. The algorithm
described in Sec. III shows that maximal betweenness cen-
trality is attained by dominating nodes in the top layer and is
equal to Bmax= I1�2D1+ I1−1� /D2. Fixing the number of
nodes, N, and the resistance r forces a fixed value for D2
=N /r, but we are free to shift nodes between the first two
groups, changing I1 and D1 to customize Bmax. Thus r and
Bmax are independent for large networks. In practice, we can
attain any maximal betweenness centrality with prescribed
resistance to synchrony. Conversely, we can prescribe Bmax
and design large networks which attain any value of r.

Similar construction constraints allow r to be independent
of the average path length and heterogeneity of degree as
measured by the variance. The variance of degree can be
designed using primarily the nodes in the lower layers of the
layer cake, while r is determined by the top layer �and the
total number of nodes�.

One measure of degree homogeneity which is directly re-
lated to the resistance to synchrony for threshold networks is
the range of degrees. This is because kmax+1=N and kmin
=Dn so that r= �kmax+1� /kmin. This simple relationship shows
that once the interval of allowed degrees is established, r has
been determined. We have thus derived a direct relationship
between the heterogeneity of degree as measured by the
range of degree and resistance to synchrony for threshold
networks. One can increase the resistance to synchrony by
either increasing the degree of the highest degree node or
decreasing the degree of the lowest degree node. A narrow
range implies ease of synchrony.

Other applications of spectral design using threshold net-
works include graph partitioning �40� and generic diffusively
coupled systems governed by reaction diffusion equations or
wave equations. Variations between states of low-degree
nodes and their neighbors are associated with low eigenval-
ues and so are slowest to decay in diffusive systems and
oscillate the slowest in wave settings. This agrees with our
intuition since the low-degree nodes have least coupling with
other nodes. The fact that the eigenvalues are precisely the
degrees for the low-degree nodes confirms this intuition.
Less intuitive, perhaps, is the result that eigenvalues are the
same for eigenvectors identifying a group and eigenvectors
showing variation within that group. Thus, variations within
a group decay at the same rate as variations between that
group and other neighboring nodes.

FIG. 7. �Color online� The phase difference of coupled oscilla-
tors vs time for a network with the dynamics given by ui=−ui

+�� j=1
N Lij�uj

3−uj
5 /2� and �=0.01855. The system is started from an

initially synchronized state with a small random perturbation ap-
plied to all nodes. The instantaneous phase is estimated using a
Hilbert transform of the time signals �39�. �a� A 100-node threshold
model with weights randomly selected from a power-law distribu-
tion with exponent �=−2.5 and with threshold �=3. The eigenvalue
ratio is r=�N /�2=100/33�3.0. �b� The same network as �a� but
with three nodes added so that the creation sequence ends in 101.
This change makes the synchronized state unstable. The eigenvalue
ratio in �b� is r=�N /�2=103/1=103.
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IV. SUMMARY

The threshold model for network creation is one of many
models used to generate networks of arbitrary size with an
approximate local properties such as degree distribution,
clustering, degree correlation, or spectrum. We summarize
previous work on networks created by the threshold model
and present an alternative deterministic model for threshold
network creation which approximates a prescribed degree
distribution or spectrum. In either case, the created threshold
networks are graph-theoretic threshold graphs, a fact that im-
poses a very specific network structure. We use this structure
to develop a methodology for compact storage and fast com-
putation of many network properties. The degree distribu-
tion, clustering, betweenness centrality, and Laplacian spec-
trum can all be computed in linear time. In addition, the
Laplacian spectrum and eigenvector structure are completely
characterized, allowing these networks to be created with
customized spectrum. Algorithms for the generation, storage,
and structural analysis presented here are contained in the
authors’ open-source software package NetworkX �41�.

Building on this base, we have described some implica-
tions for the study of synchronization of diffusively coupled
oscillators. Diffusive spreading occurs most quickly through
high degree nodes, with spread around a clique being no
faster than spread to those outside the clique �42,43�. Syn-
chronization is described in terms of the spectrum of the
network. Threshold networks provide constructive counter-
examples to the notion that networks with small diameter are
easy to synchronize. We also derived the result for threshold
networks that resistance to synchrony is completely deter-
mined by the minimum and maximum degrees in the net-
work.

The existence of fast algorithms for structural analysis
suggests that threshold networks are good candidates for net-
work deconstruction. That is, rather than analyzing an entire
network at once, we might consider the important threshold
networks embedded in a larger network and how they are
connected. Storing and manipulating this reduced network
may be more effective than working with the original net-
work for some tasks. The network motif literature �see, e.g.,
�1�� deconstructs large networks using subnetworks with
small numbers of nodes. By identifying small structures that
occur more often than expected they attempt to identify
structures with useful features in the network. Using thresh-
old networks as the motif structures may have advantages
over small subnetworks because threshold networks are arbi-
trarily large and yet are still computationally manageable.

Threshold networks are also good candidates for con-
structing nonthreshold networks with specified structure. The
algorithm might consist of creating many threshold networks
with desired properties and then connecting them in ways
that do not significantly alter those properties. The ability to
create networks by connecting subnetworks with given struc-
ture could provide great flexibility in network design.
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