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Abstract We investigate large-scale particle motion and solute breakthrough in sparse
three-dimensional discrete fracture networks characterized by power law distributed fracture lengths.
The three networks we consider have the same fracture intensity values but exhibit different percolation
densities, geometric properties, and topological structures. We considered two different average transport
models to predict solute breakthrough, a streamtube model and a Bernoulli continuous time random walk
model, both of which provide insights into the flow fields within the networks. The streamtube model
provides acceptable predictions at short distances in two of the networks but fails in all cases to predict
breakthrough times at the outlet plane, which indicates that particle motion in such fracture networks
cannot be characterized by a constant velocity between the inlet and control plane at which the
breakthrough curve is detected. Rather, the structure of the network requires that frequent velocity
transitions be made as particles move through the system. Despite the relatively broad distribution of
fracture radii and relatively small number of independent velocity transitions, the continuous time random
walk approach conditioned on the initial velocity distribution provides reasonable predictions for the
breakthrough curves at different distances from the inlet. The application of these averaged transport
models provides a richer understanding of the link from the fracture network structure to flow and
transport properties.

1. Introduction
Geological structures significantly influence hydrodynamic flows in low-permeability fractured media.
Within an isolated fracture, the nonuniform resistance offered by uneven fracture walls leads to irregular-
ities in the flow, the magnitude of which depends on the roughness in the fracture's aperture (Cardenas
et al., 2007; de Dreuzy et al., 2012; Fiori & Becker, 2015; Johnson et al., 2006; Kang et al., 2016; Keller
et al., 1999, 1995) and the Reynolds number of the flow (Cardenas et al., 2009; Zou et al., 2017). In a fracture
network, larger features can play a more dominant role than in-fracture aperture variability in determin-
ing the structure of the fluid velocity field (Bisdom et al., 2016; de Dreuzy et al., 2012; Karra et al., 2015;
Makedonska et al., 2016). While it is understood that macroscale network traits influence the arrangement
of the fluid flow field within a fracture network (Edery et al., 2016; Hyman & Jiménez-Martínez, 2018), a
direct link between geometric and topological properties of the fracture network and upscaled transport
observables is still lacking. With such a wide range of relevant length scales, several orders of magnitude
(Bonnet et al., 2001; Davy et al., 2013; Hardebol et al., 2015), it is challenging to identify which features of
a fracture network influence which flow and transport properties. However, characterizing how the struc-
ture of a fracture network influences transport behavior therein is critical for many civil and industrial
engineering applications such as CO2 sequestration (Jenkins et al., 2015), aquifer storage and management
(National Research Council, 1996; Neuman, 2005), environmental restoration of contaminated fractured
media (Kueper & McWhorter, 1991; VanderKwaak & Sudicky, 1996), hydrocarbon extraction from uncon-
ventional shale aquifers (Hyman et al., 2016; Middleton et al., 2015), and the long-term storage of spent
nuclear fuel (Follin et al., 2014; Selroos et al., 2002).

The effects of these multiple scales on the fluid velocity field within the fracture network are borne wit-
ness in the breakthrough curves (BTCs) of dissolved chemicals transported by the flow. For example, fluid
flow channeling, where a majority of flow occurs in a subregion of the domain, is well documented in both
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field experiments (Abelin et al., 1985, 1991; Rasmuson & Neretnieks, 1986) and in numerical simulations
(de Dreuzy et al., 2012; Frampton & Cvetkovic, 2011; Hyman et al., 2015; Maillot et al., 2016). Trans-
port in fractured media commonly exhibits non-Gaussian (anomalous) behavior. In particular, power law
scaling in the tail of the transport BTCs through fractured media has been observed in field experiments
(Becker & Shapiro, 2000, 2003; Gouze et al., 2008; Hadermann & Heer, 1996; Kang et al., 2015) as well
as field-scale numerical simulations (Di Donato et al., 2003; Frampton & Cvetkovic, 2007, 2009; Hyman
et al., 2015, 2016; Makedonska et al., 2016; Painter et al., 2002). Various models have been proposed to aid
in the interpretation of solute breakthrough in fractured media when the advection-dispersion equation
fails to provide adequate predictions including the following: the stochastic convective streamtube model
(Becker & Shapiro, 2003), continuous time random walk, fractional advection-dispersion equations (Benson
et al., 2000a, 2000b), tempered one-sided stable distribution (Cvetkovic, 2011), and multirate mass transfer
(Haggerty & Gorelick, 1995). While these models can be calibrated to provide good agreement with data,
their parameterizations often lack a direct connection between the properties of the porous media and
observed flow and transport properties (Neuman & Tartakovsky, 2009).

Through direct numerical simulation of flow and transport through fracture networks, we uncover a
direct link between network structural properties, for example, fracture connectivity, and flow and particle
transport behavior. We consider the steady state flow of an isothermal single phase liquid through sparse
three-dimensional fracture networks in a 1-km domain. Fracture lengths of the networks follow a power
law distribution, which is a property that is commonly observed in the field (Bonnet et al., 2001). Three
networks are constructed to have the same fracture intensity (surface area per unit volume) values but dif-
ferent network connectivity structures, that is, network topology, due to different exponents in the power
law distribution of fracture lengths. Focusing on the macroscale network structure, we quantify the differ-
ences in fracture geometric, for example, size and aperture, and topological, for example, connectivity and
position in the network relative to inflow and outflow boundaries, properties between the networks using a
graph-based approach (Hyman et al., 2017). Flow and transport through the networks is interpreted using a
stochastic convective streamtube model and a Bernoulli continuous time random walk model (Dentz et al.,
2016), both of which provide insights into the link between fracture structure and transport properties.

2. Flow and Transport Simulations
We consider flow and transport in three synthetic three-dimensional fracture networks that we model
using a discrete fracture network (DFN) approach. The choice to use DFNs, rather than stochastic contin-
uum or dual permeability/porosity models, is based on our goal of linking network structure properties to
flow observables. DFN models explicitly represent fractures as discrete entities that form a network. While
this conceptual formulation of fractured media allows for detailed information about fracture geometry
and network topology to be quantified, the computational burdens associated performing direct numerical
simulations on large-scale, thousands of individual fractures, three-dimensional DFN are demanding and
until recently were prohibitive. Thus, early DFN models used pipe-network approximations (Cacas et al.,
1990; Dershowitz & Fidelibus, 1999; Nordqvist et al., 1992) or were two-dimensional models (Berkowitz
& Scher, 1997b, 1998; de Dreuzy et al., 2004, 2001, 2002) or modest-sized three-dimensional networks
(Andersson & Dverstorp, 1987; Huseby et al., 2001; Long et al., 1982). Nonetheless, these simulations helped
develop a better understanding of how fracture and network attributes, such as the distribution of fracture
lengths; internal heterogeneity; and variable density, influence flow properties such as effective permeability
(Bogdanov et al., 2007; Hamzehpour et al., 2009; Koudina et al., 1998; Mourzenko et al., 2004, 2011). How-
ever, recent advances in numerical methods for DFN modeling and evolving high-performance computing
(HPC) capabilities have allowed for a resurgence in DFN modeling where flow and transport through larger
and more complicated networks, tens of thousands of fractures, can now be simulated, (Berrone et al., 2015;
Bonneau et al., 2016; Cacas et al., 1990; Davy et al., 2013; de Dreuzy et al., 2012; Erhel et al., 2009; Hyman
et al., 2014, 2015; Joyce et al., 2014; Lang et al., 2014; Maillot et al., 2016; Makedonska et al., 2016).

2.1. DFN Simulation
We use the dfnworks (Hyman et al., 2015) suite to generate each DFN, solve the steady state flow equations,
and determine transport properties therein. dfnworks combines the feature rejection algorithm for mesh-
ing (fram; Hyman et al., 2014), the LaGriT meshing toolbox (LaGriT, 2013), the parallelized subsurface flow
and reactive transport code pflotran (Lichtner et al., 2015), and an extension of the walkabout particle
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Figure 1. Images of the discrete fracture networks that we consider, network 1 (left), network 2 (middle), and network
3 (right). Fractures in the networks all follow a power law distribution (equation (1)) with exponent 𝛼 of 1.6 (left) 2.2
(middle), and 2.6 (right). Fractures are colored according to their size with warm colors indicating larger fractures.
Although the networks have similar fracture intensity, they have vastly different topological structures as well as range
of relevant length scales.

tracking method (Makedonska et al., 2015; Painter et al., 2012). fram is used to generate three-dimensional
fracture networks. LaGriT is used to create a computational mesh representation of the DFN in parallel.
pflotran is used to numerically integrate the governing flow equations. walkabout is used to determine
pathlines through the DFN and simulate solute transport. Details of the suite, its abilities, applications, and
references for detailed implementation are provided in Hyman et al. (2015).

Three synthetic aperiodic DFN composed of disk-shaped fractures are generated within a cubic domain.
Fracture centers are uniformly distributed throughout the domain, and orientations are also uniformly
random.

The fracture radii r are sampled from a truncated power law distribution with upper and lower cutoffs (ru;
r0) and exponent 𝛼. The probability density function (PDF) for the radius is given by the following:

pr(r) =
𝛼

r0

(r∕r0)−1−𝛼

1 − (ru∕r0)−𝛼
. (1)

We consider three different values for the power law exponent 𝛼: 1.6, 2.2, and 2.6. These selected values for
the exponent are within the range of values observed in the field (Bonnet et al., 2001). We refer to these
networks as network 1 (𝛼 = 1.6), network 2 (𝛼 = 2.2), and network 3 (𝛼 = 2.6). Images of the three
networks are provided in Figure 1; network 1 (left), network 2 (middle), and network 3 (right). Fractures
are colored according to their size with warm colors indicating larger fractures.

Fracture apertures are determined by correlating their width to the fracture radii using a positively correlated
power law relationship:

b = 𝛾r𝛽 , (2)

where 𝛾 = 5.0 × 10−4 and 𝛽 = 0.5 are dimensionless parameters. This correlation between fracture size
and aperture is a common assumption in DFN models (Bogdanov et al., 2007; de Dreuzy et al., 2002; Hyman
et al., 2016; Frampton & Cvetkovic, 2010; Joyce et al., 2014; Wellman et al., 2009).

We work in nondimensional variables. Length scales are nondimensionalized by the minimum fracture size
r0; r0 = r0∕r0 = 1, ru = ru∕r0 = 100, and the domain size is L = 100r0. The distributions of fracture radii
are shown in Figure 2 (left) where circles represent network 1, triangles network 2, and diamonds network
3. The reported values show that as 𝛼 increases, there are fewer large fractures in the networks, a trait that
can also be observed in Figure 1.

The requested number of fractures in the networks is selected so that when isolated fractures are removed,
the dimensionless fracture intensity P32r0 (network surface area over total domain volume) of the networks
are all close to 0.4. While the networks have similar final intensities, they have different densities. We mea-
sure the density of the networks using the percolation parameter p defined by De Dreuzy et al. (2000). We use
a dimensionless version of p∗ = p∕pc, where pc is the critical percolation density value, which is the density
the critical density pc of fractures such that if the density of the network p < pc, then the system is on aver-
age not connected, and if p > pc, then the system is connected by a cluster than spans the whole domain;
that is, it forms an infinite cluster (Berkowitz & Balberg, 1993; Bour & Davy, 1997, 1998; Sahimi, 1994).
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Figure 2. (left) Distribution of the fracture radii for the three networks under consideration, which are characterized by the fracture length distribution (1). The
blue diamonds represent network 1, the red squares represent network 2, and the orange circles represent network 3. Empty marker are the originally sampled
distribution, and filled markers are the final distribution, once isolated fractures and clusters are removed. The networks 1 and 2 have substantially more large
fractures than network 3. (middle) Fracture degree distribution. The degree of a fracture is number of other fractures that it intersects, that is, the degree of the
corresponding node in the graph representation. The networks exhibit the same behavior for small degrees but differ at higher values. In particular, networks 1
and 2 have more fractures with higher degree; that is, there are more fractures that intersect many other fractures. (right) Plot of fracture degree plotted as a
function of fracture radii. In general, small fractures intersect fewer fractures than larger ones.

An advantage of p∗ is that it provides a constant measure of density with respect to the percolation threshold
regardless of the exponent in the power law distribution (de Dreuzy et al., 2012). Values of p∗ are reported in
Table 1, and all values are much greater than the percolation threshold, which ensures that there are paths
from inflow to outflow boundaries. Note that the domain size, minimum, and maximum fracture size are
all fixed so these values highlight how the exponent of the power law plays a key role in determining den-
sity relative to the percolation threshold. In case of the network 1, there are the fewest number of fractures
in the domain, both prior and after isolated clusters are removed, but the value of p∗ is the highest because
there is high probability for long fractures that connect across the domain to be sampled and included into
the domain, compare circles in Figure 2 (left). Conversely, in the case of network 3, where there are the
largest number of fractures, again both prior and after isolated clusters are removed, the value of p∗ is the
lowest because there is low probability for long fractures to connect across the domain, compare diamonds
in Figure 2 (left).

Another result of the different choices of exponent in the power law distribution is that the networks
have different topological properties. We characterize and query the topology of each network by repre-
senting each network as a graph using the method described in Hyman et al. (2017); details provided
in Appendix C. In this particular graph representation, vertices correspond to fractures in the DFN and
there is an edge between vertices if the corresponding fractures intersect in the DFN, which is similar
to the graph representation of a DFN proposed by Huseby et al. (1997). However, the method is distin-
guished by the inclusion of source and target vertices, corresponding to the inflow and outflow boundaries,
into the graph to provide a topological point of reference with respect to inflow and outflow boundaries.
For every fracture that intersects the inflow boundary an edge is added between the vertex in the graph
corresponding to that fracture and the vertex representing the inflow boundary; likewise for the outflow
boundary. Similar graph theoretical approaches have been used for a variety of studies concerning DFN
including topological characterization (Andresen et al., 2013; Huseby et al., 1997; Hope et al., 2015; Hyman
& Jiménez-Martínez, 2018) and backbone identification (Hyman et al., 2018; Valera et al., 2018). The utility

Table 1
Network Characterization: Power Law Exponent 𝛼, Number of Fractures (# F), Nonisolated Fractures (# F̂),
Dimensionless Connected Network Density p∗, Initial P32 [−]), Final P̂32 [−]), Dimensionless Mean Radius [−] (r̄),
Dimensionless Minimum Radius [−] (rmin), Dimensionless Maximum Radius [−] (rmax), Assortativity Coefficient  , and
Number of Vertices in the Shortest Path Between the Inflow and Outflow Boundaries

Network 𝛼 # F # F̂ p∗ P32 P̂32 r̄ rmin rmax  SPL
1 1.6 13,183 3,222 93 0.60 0.42 3.9 1.0 87.9 −0.20 1
2 2.2 22,480 4,697 23 0.70 0.41 3.6 1.0 68.6 −0.13 2
3 2.6 41,752 7,055 14 0.90 0.37 2.4 1.0 52.6 −0.16 11
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of a graph theoretical approach is that topological properties of the networks can be queried and character-
ized in a formal mathematical framework. For example, once isolated fractures and clusters are removed,
we can identify that each network is composed of a single connected component, similar to the analysis
performed by Huseby et al. (1997).

Figure 2 (middle) shows the fracture degree distributions for the three networks. We define the degree of a
fracture by the number of other fractures that it intersects, that is, the degree of the corresponding node in
the graph. The mean of these distributions is equivalent to the dimensionless density detailed in Mourzenko
et al. (2005). Many of the fractures connect to few other fractures, but several of them connect to many
fractures. Plotted on log-log axis, we see that all of the networks show a skew distribution of the fracture
degree distributions, which indicates scale-free network properties (Albert & Barabási, 2002; Barabási &
Albert, 1999). As the exponent of the power law fracture size distribution decreases, the exponent of a power
law fit to the degree distribution also decreases due to larger fractures connecting to more other fractures.
Figure 2 (right) shows the fracture degree distributions for the three networks plotted as a function of the
fracture radius to highlight how fractures are connected to one another. In general, larger fractures have
higher degree indicating that they are better connected. These observations suggest that the DFNs can be
thought of as a series of hubs (large fractures) connected by paths through (smaller fractures). In network
1 and network 2, there are a few primary hubs so particles can move through the system without having to
traverse many small fractures. In the case of network 3, more transitions between fractures need to occur. We
also compute a measure of degree mixing using the assortativity coefficient  (Newman, 2002, 2003) of the
three networks. The assortativity coefficient measures whether vertices in a graph connect to other vertices
with similar degree. It is quantified using the Pearson correlation coefficient (Newman, 2003), which ranges
between−1 and 1. Values greater than 0 indicate correlation between vertices of similar degree, while values
less than 0 indicate correlation between vertices of different degrees. In all cases, the value is less than 0,
which indicates that the networks exhibit disassortative mixing. Physically, this means that fractures with
a high degree connect to fractures with low degree. Given the previously discussed relationship between
fracture degree and fracture size, the values of < 0 indicate that larger fractures are connected to numerous
small fractures.

Another utility of this particular graph representation is that it allows us to compute the shortest topological
paths between the inflow and outflow boundaries using Dijkstra's algorithm (Dijkstra, 1959). The number of
vertices in the shortest path through the graph corresponds to the fewest number of fractures a particle would
have to move through to exit the system starting from the inlet plane. In network 1 there are 2 fractures that
directly connect the inflow and outflow boundaries, 36 paths between the inflow and outflow boundaries
contain 2 fractures, and 396 paths that contain 3 fractures. In network 2, no fracture directly connects the
inflow and outflow boundaries, but there are 3 paths that contain only 2 fractures, and 55 paths made up of 3
fractures. In network 3, the shortest paths between the inflow and outflow boundaries contain 11 fractures.
There are 45 of such paths. These values are copacetic with expectations concluded from analysis of the
dimensionless density values p∗ reported in Table 1.

The provided geometric, fracture size and network intensity, and topological shortest path length, charac-
terization reveals a few key properties about the networks. First, the source and target are well connected
in networks 1 and 2 by a few large fractures. Thus, it is possible for particles pass through the domain while
only making a few transitions between fractures. On the other hand, particles in the network 3 must make
many transitions between fractures before exiting the domain. Therefore, while the network intensities are
similar, P32 ≈ 0.04 for all networks, they are topologically quite different. In the following sections, we
characterize how these differences influence transport properties.

2.2. Flow
The governing equations for an isothermal, incompressible, Newtonian fluid at steady state within the
fracture networks are the Stokes equations:

𝜇∇2u − ∇P = 0
∇ · u = 0,

(3)

where 𝜇 is the fluid viscosity and ∇P is the pressure gradient. Under the assumption of aperture uniformity,
flow through individual fractures is equivalent to flow between two parallel plates and (3) can be integrated
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Figure 3. Cumulative distribution of surface area (full symbols) and
volumetric flow rate (empty symbols) as a function of fracture size for (blue
diamonds) network 1, (red squares) network 2, and (orange circles)
network 3. CDF = cumulative distribution function.

to determine the volumetric flow rate Q per unit fracture width normal
to the direction of flow to obtain

Q = −b3

12𝜇
∇P, (4)

that is, the Boussinesq equation. Note that the relationship between aper-
ture and flow rate can be used to derive a relationship between aperture
and transmissivity:

T = b3

12
, (5)

referred to as the cubic law (Witherspoon et al., 1980). A consequence of
(2) and (5) is that fracture's permeability/transmissivity is positively cor-
related to its size. We assume that the matrix surrounding the fractures
is impervious and there is no interaction between flow within the frac-
tures and the solid matrix; matrix diffusion is not considered in these
simulations.

We drive flow through the domain by applying a pressure difference
of 1 MPa across the domain aligned with the x axis and solving for
steady state pressure within the domain. Dirichlet boundary conditions

are applied to all nodes in the computation mesh with x = 0 and x = 100r0 such that a 1-MPa
gradient is formed across the domain. Neumann, no-flow, boundary conditions are applied along lat-
eral boundaries, and gravity is not included in these simulations. These boundary conditions along with
mass conservation,

∇ · Q = 0 , (6)

are used to form an elliptic partial differential equation for steady state distribution of pressure within each
network:

∇ · (b3∇P) = 0 . (7)

Once the distribution of pressure and volumetric flow rates are determined by numerically integrating (7),
the Eulerian velocity field u(x) within the DFN is reconstructed from the volumetric fluxes and pressures
using the method provided in Makedonska et al. (2015) and Painter et al. (2012). Even though the fracture
apertures are uniform within each fracture plane, the in-fracture velocity field is nonuniform. The structure
of the flow field within each fractures depends on in-plane boundary conditions, which is determined by
the fracture's location within the network.

The differences in power law exponents in the networks control the distribution of fracture surface area in
the system, and it also influences the distribution of flow rates in the domain. Figure 3 shows the cumu-
lative distribution function (CDF) of surface area plotted as a function of fracture size. Recall that the P32
values are the same for all three networks, so the final surface area is also the same. However, how frac-
tures contribute to these values are quite different in the three networks. Due to the power law distribution
of fracture radii, the contribution of each fracture to the cumulative surface area is unbalanced, with a few
large fractures contributing the most to the total surface area of the system. This feature is most pronounced
in network 1 and network 2. In network 3, the contribution of total surface area is more uniform, due to the
narrower range of fracture radius. Along with the surface area is the CDF of volumetric flow rate Q, also
plotted as a function of fracture radius. In comparison with the CDF of surface area, the jumps in the CDF
of Q are even more pronounced and indicate strongly channelized flow. There are a few large fractures that
carry a disproportionately large amount of flow relative to their size, most notably in networks 1 and 2. In
the case of network 3, the contribution of flow on the majority of fractures is closer to being proportional
to their size.

2.3. Particle Tracking
We consider here purely advective transport and represent the spreading of a nonreactive conservative solute
in the DFN by a cloud of passive tracer particles, that is, using a Lagrangian approach. For the use of particle
tracking to solve transport in fracture networks, see also Berkowitz and Scher (1997b) and Huseby et al.
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(2001) and the review by Noetinger et al. (2016). The imposed pressure gradient is aligned with the x axis,
and thus, the primary direction of flow is also in this direction. Particles are injected over a plane Ωa located
at x = 0 perpendicular to the mean flow direction. Thus, the initial particle positions are a = (0, a2, a3)⊤
where the superscript ⊤ denotes the transpose. The area A of the inlet plane is

A = ∫
Ωa

d𝑓. (8)

The total flux Q over the inlet plane is

Q = ∫
Ωa

dau(a), u(a) = |u(a)|, (9)

while the total mass injected over the plane is

M = ∫
Ωa

dam(a), (10)

where m(a) is the areal mass density.

We consider a flux-weighted injection mode that accounts for both aperture and volumetric flow rate where
the mass distribution at the inlet is

m(a) = M u(a)
Q

. (11)

The trajectory x(t; a) of a particle starting at a at time t = 0 is given by the advection equation:

dx(t; a)
dt

= vt(t; a), x(0; a) = a, (12)

where the Langrangian velocity vt(t; a) is given in terms of the Eulerian velocity u(x) as

vt(t; a) = u[x(t; a)]. (13)

At fracture intersections, we apply complete mixing such that the probability to enter an outgoing fracture
is weighted by its flux. The length 𝓁(t; a) of the trajectory at a time t is given by

d𝓁(t; a)
dt

= vt(t, a), (14)

where the Lagrangian velocity magnitude is vt(t, a) = |vt(t, a)|. The length of the pathline, 𝓁, is used to
parameterize the spatial and temporal coordinates of the particle. The space-time particle trajectory is given
in terms of 𝓁 by

dx(𝓁; a)
d𝓁

=
v𝓁(𝓁; a)
v𝓁(𝓁; a)

(15a)

dt(𝓁; a)
d𝓁

= 1
v𝓁(𝓁, a)

(15b)

where we defined the space-Lagrangian velocity v𝓁(𝓁, a) = v [x(𝓁; a)] and its magnitude v𝓁(𝓁, a) =|v𝓁(𝓁, a)|.
The first arrival time 𝜏(x1; a) of a particle at a control plane located at x is given by

𝜏(x1; a) = t[𝜆(x1); a], 𝜆(x1) = inf{𝓁|x1(𝓁; a) ≥ x1}. (16)

The mass represented by each particle and the breakthrough time at each control plane can be combined to
compute the complement of the total solute mass flux F(t, z) that has broken through at a time t:

F(t, x1) =
1
M ∫

Ωa

dam(a)H[𝜏(x1, a) − t]. (17)

Here, H(t) is the Heavyside function where H(t) = 1 for t > 0, and H(t) = 0 otherwise. Equation (17) is the
integral form of the complementary CDF of solute passing through a control plane. We refer to F(t, x) as the
BTC. To generate the BTCs, one million particles are tracked through each network. Detailed Lagrangian
information, for example, the stationary space Lagrangian velocity PDF, are obtained using 100,000 particles
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Figure 4. (circles) Stationary space Lagrangian velocity probability density
function (PDF), (squares) spacial sampled velocity PDF at the inlet plane,
(diamonds) Eulerian velocity PDF, and (triangles) flux-weighted Eulerian
velocity PDF for (top to bottom) networks 1–3.

due to memory and disk space limitations; all Lagrangian information
is postprocessed and must be saved. Increasing the number of particles
beyond these counts did not influence these upscaled quantities.

3. Flow and Transport Behavior
In this section, we analyze the flow behavior in terms of distribution of
the Eulerian velocity magnitude. Particle transport is characterized by the
tortuosity of particle pathlines and particle arrival times at different dis-
tances from the inlet plane. The breakthrough behavior is compared to a
simple prediction based on a stochastic convective streamtube approach.
This approach has been used for the prediction of transport in highly het-
erogeneous fractured (Becker & Shapiro, 2003) and porous media (Cirpka
& Kitanidis, 2000; Dagan & Bressler, 1979; Ginn et al., 1995). It assumes
that particle velocities along pathlines are approximately constant and
transport is dominated by velocity contrast between streamtubes. We
expect this approach to hold relatively close to the inlet plane.

3.1. Velocity Distributions
The PDF of the Eulerian velocity magnitude ve(x) = ||u(x)|| is given by

pe(v) =
1

Ve ∫
Ωe

dx𝛿[v − ve(x)], (18)

where Ωe is the flow domain and Ve its volume. The PDF of the space
Lagrangian velocity magnitude v𝓁(𝓁) is given by

p̂𝓁(v,𝓁) =
1
M ∫

Ωa

dam(a)𝛿[v − v𝓁(𝓁, a)]. (19)

Under ergodic conditions, this means for a sufficiently large injection
volume and flow domain, the steady space Lagrangian PDF p𝓁(v) =
lim𝓁→∞p̂𝓁(v,𝓁) and the Eulerian velocity PDFs are related through
flux-weighting as shown in (Comolli & Dentz, 2017; Dentz et al., 2016;
Kang et al., 2017):

p𝓁(v) =
vpe(v)⟨ve⟩ . (20)

Computationally, the PDFs of Eulerian velocity magnitude are directly
obtained from the reconstructed ||u(x)|| velocity field and the Lagrangian
PDFs are obtained using the particle tracking methods described above.

The PDF of velocity magnitudes in the injection domain is given by
p0(v) = p̂𝓁(v,𝓁 = 0). Figure 4 shows the Eulerian, flux-weighted Eulerian,
and the space Lagrangian velocity PDFs as well as the space Lagrangian
velocity PDF at the injection plane for the three fracture networks under
consideration. First, the maximum Eulerian velocities and the Eulerian
average velocities decrease with decreasing power law exponent 𝛼. This
observation is related to positive correlation of aperture with the frac-
ture lengths, the later decreases with increasing 𝛼 (cf. Table 1). Second,
we observe that the distribution p0(v) of velocity magnitudes at the inlet
plane and p𝓁(v) are in good agreement at high velocities, while they devi-
ate toward low velocities. For network 1 they start deviating at around

v∕ve = 10−3, for network 2 at around v∕ve = 10−5 and for network 3 they stay at the same order of magni-
tude until around v∕ve = 10−6. This behavior can be traced back to the fact that, for the same cross-sectional
area, the velocity variability in a cross section is higher for a dense than a sparse network, and closer to
the overall variability sampled throughout the medium. These features can also be observed by comparing
the flux-weighted Eulerian and space Lagrangian velocity PDFs. According to relation (20), they are equal
under ergodic conditions. Both PDFs coincide well at high velocity magnitudes and start deviating at low
velocities. Specifically, for network 1, both PDFs compare well to velocities of around v = 10−3, for network
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Figure 5. Mean tortuosity as a function of distance x1 traveled for network
1 (blue diamonds), network 2 (red squares), and network 3 (orange circles).

2 down to v = 10−2, and for network 3 until 10−3. This behavior can also
be attributed to the finite flow domain and the number of fractures in the
flow domain which is #F = 3, 222 for network 1, 4,697 for network 2,
and 7,055 for network 3 (cf. Table 1).

3.2. Tortuosity
The length of a particle path when a particle first arrives at a linear dis-
tance x1 is given by 𝜆(x1) in (16). The length of the pathline is in general
larger than the linear distance. This notion is quantified by tortuosity:

𝜒(x1) =
⟨𝜆(x1)⟩

x1
(21)

which measures the ratio between the average path length and linear
distance. Under ergodic conditions, this means here at a linear dis-
tance x1 ≫ 𝓁c much larger than the characteristic fracture length, the
tortuosity is given by (Koponen et al., 1996)

𝜒∞ = lim
x1→∞

𝜒(x1) =
⟨ve⟩⟨u1⟩ . (22)

The asymptotic tortuosity is highest for the network 3, namely, 𝜒∞ = 2.71 because the higher number of
relatively short fractures induces a high tortuosity in the particle path. For networks 1 and 2, the average
fracture length increases; as a result, particle paths are less tortuous with 𝜒∞ = 1.36 for network 1 and
𝜒∞ = 1.47 for network 2.

At finite distances x1, however, the tortuosity depends on the local geometry and fluctuates as illustrated
in Figure 5. For all three networks, the tortuosity at short distances is low because particles move pre-
dominantly through single fractures. As particles start sampling different fractures and path lines change
orientation, the tortuosity increases. The strongest increase can be observed in network 3, which has the
highest directional disorder. Note that, in this case, the shortest path connecting the inflow and outflow
boundary contains 11 fractures. For the networks 1 and 2 there are two fractures directly connecting the
inflow and outlet boundaries, while in network 2 there two paths that connect via two fractures. As a conse-
quence of these features, the observed values of tortuosity do not reach the corresponding asymptotic value
𝜒∞ in any of the three networks, but they are not far from these asymptotic values.

3.3. BTCs
We consider here particle BTCs for the three different networks. Figure 6 shows the BTCs for networks
1–3 at control planes located at dimensionless distances of x1 = 25, 50, and 100r0. Time is rescaled by

Figure 6. Breakthrough curves at x = 100r0 for (blue) network 1, (red)
network 2, and (orange) network 3. The solid lines denote the direct
numerical simulations, and the symbols denote the corresponding best fit
of the solution (23) of an equivalent the advection-dispersion equation.
ccdf = complementary cumulative distribution function.

𝜏v = r0∕⟨ve⟩, distances by r0. The solution for the BTC F(t, x1) of an equiv-
alent advection-dispersion equation characterized by a constant effective
velocity veff and macrodispersion coefficient Dm is given by Kreft and
Zuber (1978):

F(t, x1) = 1−1
2

[
erfc

(
x1 − ve𝑓𝑓 t√

4Dmt

)
+ exp

(x1ve𝑓𝑓

Dm

)
erfc

(
x1 + ve𝑓𝑓 t√

4Dmt

)]
.

(23)

Figure 6 compares the BTC data for x1 = 100r0 with the best fit of
solution (23) with respect to veff and Dm. The BTCs in all cases show
pronounced non-Fickian behavior (power law tailing), which cannot be
captured in terms of an equivalent homogeneous porous medium whose
transport properties are characterized by macrodispersion. For networks
1 and 2, the first arrival is significantly earlier than for network 3. This can
be traced back to the fact that the tortuosity increases as 𝛼 increases and
to the coupling of fracture length and aperture. Networks 1 and 2 have
a higher proportion of longer and thus more conductive fractures. The
stronger tailing of the BTC for network 3 compared to networks 1 and 2
reflects the higher probability of low velocities; see Figure 4.
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Figure 7. Breakthrough curves at (black) x = 25, (green) 50, and (orange)
100r0 for (top to bottom) networks 1–3. The solid lines denote the direct
numerical simulations, and the symbols denote the estimation based on
expression (24) obtained from the stochastic convective streamtube
approach.

We compare the behavior of the BTCs with the prediction of a stochas-
tic convective streamtube model (Becker & Shapiro, 2003; Kang et al.,
2015). This model assumes that transport occurs along streamtubes each
of which has a constant velocity v. The velocity between streamtubes is
distributed according to p0(v). This assume that particle paths between
the inlet and outlet can be characterized by a single constant velocity
and thus that the velocity in the fractures sampled along this path are
essentially equal. The travel time along a streamtube thus is given by
𝜏(x1, a) = x1𝜒(x1)∕u(a), where x1𝜒(x1) is the average streamline length
between the inlet and control plane. Thus, the solute BTC is given in
terms of the velocity PDF as

F(t, x1) =

x1𝜒(x1)∕t

∫
0

dv′p0(v′), (24)

where p0(v) is the velocity distribution at the inlet plane discussed in
section 3.1 for each network; see Appendix A.

For network 1, the BTCs at x1 = 25r0 and x1 = 50r0 are reasonably well
predicted by expression (24) with a slight overprediction of the tails; see
Figure 7. The estimation based on the stochastic streamtube approach
deteriorates at x1 = 100r0, for which (24) predicts a much stronger tailing
than observed from the direct numerical simulations. A similar behavior
is observed in network 2 (Figure 7). Here, the BTC is well predicted by
expression (24), which indicates that the inlet plane is connected to the
detection plane at x1 = 25r0 by fractures of lengths ≥ 25r0. For x1 = 50r0
and 100r0, the stochastic streamtube model predicts too early arrival and
overestimates the late time tailing compared to the direct numerical sim-
ulations. For network 3 (Figure 7), the stochastic convective streamtube
models overestimates tailing of the BTCs at all distances from the inlet.
For x1 = 25r0, the early arrival is predicted reasonably well, while for
x1 = 50r0 and x1 = 100r0 the streamtube prediction arrives too early
and strongly overestimates the late time tailing. These observations indi-
cate that particle motion can in general not be characterized by a constant
velocity between the inlet and control plane at which the BTC is detected
but is dominated by frequent velocity transitions. In summary, for the
shortest distance of x1 = 25r0, the streamtube prediction performs rela-
tively well with better performance for decreasing 𝛼 because the average
fracture length increases and it is more likely that a fracture connects
directly from the inlet to the control plane. It is worth noting as well
that the streamtube model provides significantly better predictions that
the advection dispersion equation. In the next section, we present a time
domain or CTRW framework in order to capture particle motion due to
velocity transitions as a result of transitions between fractures.

4. Stochastic Particle Motion
In the previous section, we have seen that the particle motion through
the fracture network cannot be understood by fully persistent velocities in
the framework of a stochastic convective streamtube approach. Instead,
particle motion seems to be determined by velocity transitions, which
coincide with the particle's transition between fractures. This is illus-

trated in Figure 8, which shows the velocity variability along a single particle trajectory versus the number
of the fracture that it traverses for six particles. Two particles from each network are shown in each column
(left: network 1, middle: network 2, and right: network 3). The green line shows the velocity magnitude, and
the blue line shows the fracture number on which the particle is currently traveling as a function of pathline
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Figure 8. Particle velocity changes (green line) and current fracture number (blue line) as a function of pathline length. Two particles from each network are
shown in each column (left: network 1, middle: network 2, and right: network 3). Changes in fracture correspond to larger changes in particle velocity. There
are more transitions in network 3 than in network 2, and there are more transitions in 2 than network 1.

distance. Note that fractures are numbered in decreasing order based on their radii; that is, the largest frac-
ture is number 1 and smallest of N fractures is number N. The velocity variability inside a single fracture is
low compared to the variability between fractures; local peaks in the velocity that do not align with changes
in the fracture number are the result of a particle passing through a line of intersection but not changing
fractures. Particles in network 1 make fewer than in network 2, and network 2 makes substantially fewer
transitions than network 3, where transitions are more frequent.

4.1. Velocity Correlation
The velocity transition length is determined from the magnitude of particle velocities sampled equidistantly
along streamlines as

Cvv(𝓁) =
1

V0 ∫
Ω0

da

∞

∫
0

d𝓁′
v′𝓁(𝓁

′; a)v′𝓁(𝓁
′ + 𝓁; a)

𝜎2
vv

, (25)

Figure 9. Correlation functions of particle velocity magnitude sampled spatially along streamlines for (blue) network
1, (red) network 2, and (orange) network 3. (left) Linear scale and (right) log-linear scale.
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where 𝜎2
vv is the velocity variance and v𝓁′(𝓁; a) the fluctuation about the mean. We assume stationarity.

Figure 9 shows the correlation functions for the different networks. The correlation distance 𝓁c here is
defined as the distance at which the velocity fluctuations anticorrelate, which we take at the first zero
crossing. Thus, we obtain for network 1 a velocity correlation length 𝓁c = 35r0, for network 2, we find
𝓁c = 25.3r0, and network 3 the correlation length is 𝓁c = 15r0; see Figure 9. Again, we have nondi-
mensionalized the distances by the minimum fracture radius. We define the average number of velocity
transitions n(x1) between the inlet and the detection plane at x1 by the average path length 𝜒(x1)x1 divided
by the velocity correlation length 𝓁c as n(x1) = 𝜒(x1)x1∕𝓁c. For network 1, particles perform an average of
n(100r0) ≈ 3.56 transitions between the inlet and outlet planes, for network 2 it is n(100r0) ≈ 5.2, and for
network 3 n(100r0) ≈ 17.33. Note that the number of transitions is significantly higher for network 3 because
the correlation length is shorter and the tortuosity is much higher than for networks 1 and 2; see Figure 5.
Notice that the different shortest path lengths of the three different networks (Table 1) is also reflected in the
correlation distance and average number of velocity transitions. The variability in the correlation lengths
explains the deterioration of the streamtube approach in section 3.3 for increasing values of 𝛼. In the fol-
lowing, we use a stochastic modeling approach that honors the fact that particles make velocity transitions
along pathlines and models them as a simple Bernoulli-type Markov process. This formulation gives rise to
a Continuous Time Random Walk type average transport model.

4.2. Continuous Time Random Walk
We model effective particle motion by a Continuous Time Random Walk (CTRW), which is characterized by
a Bernoulli velocity process that accounts for velocity transitions at a constant spatial rate 𝜅c = 1∕𝓁c, where
𝓁c is the correlation distance. We consider particle motion along pathlines characterized by the constant
increment Δ𝓁 ≪ 𝓁c. The corresponding transition time for the nth step is 𝜏n = Δ𝓁∕vn, where vn is the
particle velocity magnitude. The velocities are updated according to a Bernoulli process; this means that the
velocity remains equal to the velocity at the previous step with probability pB = exp(−Δ𝓁∕𝓁c) and changes
randomly to a velocity sampled from the steady velocity PDF p𝓁(v) with probability 1 − pB. In summary, the
particle motion is given by (Dentz et al., 2016)

𝓁n+1 = 𝓁n + Δ𝓁, tn+1 = tn + Δ𝓁
vn

, (26a)

and the evolution of particle velocities is modeled by

vn+1 = vn𝜉n + (1 − 𝜉n)𝜈n, (26b)

where p𝜉(𝜉) = pB𝛿(𝜉 − 1) + (1 − pB)𝛿(𝜉) and 𝜈 is distributed according to p𝓁(v). The particle velocities
at the first step are drawn from the initial velocity distribution p0(v). Note that CTRW approaches based on
velocity Markov models have been used for the prediction of transport in fractured (Benke & Painter, 2003;
Kang et al., 2011) and porous media (Dentz et al., 2016; Le Borgne et al., 2008b, 2008a).

BTCs are recorded at distances x1 from the inlet plane, which corresponds to a path length of 𝓁 = x1𝜒(x1),
where the tortuosity 𝜒(x1) is defined by (21). Thus, the particle travel time to a dimensionless distance 𝓁 in
this framework is given by

t(𝓁) =
n𝓁−1∑
n=0

Δ𝓁
vn

, (27)

where n𝓁 = ⌊𝓁∕Δ𝓁⌋ with ⌊·⌋ the floor function. The joint PDF of arrival times t(𝓁) and particle velocity
v(𝓁) = vn𝓁

is given by
𝑓 (t, v;𝓁) = ⟨𝛿[t − t(𝓁)]𝛿[v − v(𝓁)]⟩. (28)

It evolves according to the Boltzmann-type equation

𝜕𝑓 (t, v;𝓁)
𝜕t

− v𝜕𝑓 (t, v;𝓁)
𝜕𝓁

= −v𝜅c𝑓 (t, v;𝓁) + v𝜅cp𝓁(v)

∞

∫
0

dv′𝑓 (t, v′;𝓁). (29)

with the initial condition f(t, v;𝓁 = 0) = 𝛿(t)p0(v); see Appendix B and Massoudieh et al. (2017). The arrival
time density f(t;𝓁) = ⟨𝛿[t − t(𝓁)]⟩ is obtained from f(t, v;𝓁) by marginalization:

𝑓 (t;𝓁) =

∞

∫
0

dv𝑓 (t, v;𝓁). (30)
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Figure 10. Breakthrough curves at x = 25, 50, and 100r0 for network 1. Direct numerical simulations are lines, and
markers correspond to model predictions of the (left) conditional CTRW and (right) steady CTRW with Δ𝓁 = 1.
CTRW = continuous time random walk; ccdf = complementary cumulative distribution function.

The BTC F(t, x1) is given in terms of f(t, v;𝓁) as

F(t, x1) =

∞

∫
t

dt′𝑓 [t′;𝓁(x1)]. (31)

Note that this approach is based on the knowledge of the distribution of the Eulerian velocity magnitude, a
transport independent flow property, the correlation length 𝓁c, and tortuosity and can be conditioned on the
distribution of particle velocities at the inlet and thus on the injection mode. The joint PDF can be written
as f(t, v;𝓁) = f(t,𝓁|v)pv(v;𝓁), where pv(v,𝓁) is the velocity distribution at a distance 𝓁. For the velocity
model (26b) it is (Dentz et al., 2016)

pv(v,𝓁) = p𝓁(v) + exp(−𝓁∕𝓁c)
[
p0(v) − p𝓁(v)

]
. (32)

Under steady conditions, this means for p0(v) = p𝓁(v) and thus pv(v;𝓁) = p𝓁(v), the evolution equation for
the conditional density f(t,𝓁|v) is simply

𝜕𝑓 (t,𝓁|v)
𝜕t

− v
𝜕𝑓 (t,𝓁|v)

𝜕𝓁
= −v𝜅c𝑓 (t,𝓁|v) + v𝜅c

∞

∫
0

dv′p𝓁(v′)𝑓 (t,𝓁|v′). (33)

In the following, we apply the CTRW model (26a) to the breakthrough data from the direct numerical
simulations.

Figure 11. Breakthrough curves at x = 25, 50 and 100r0 for network 2. Direct numerical simulations are lines, and
markers correspond to model predictions of the (left) conditional CTRW and (right) steady CTRW with Δ𝓁 = 1.
CTRW = continuous time random walk; ccdf = complementary cumulative distribution function.
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Figure 12. Breakthrough curves at x = 25, 50, and 100r0 for network 3. Direct numerical simulations are lines and
markers correspond to model predictions of (left) conditional CTRW and (right) steady CTRW with Δ𝓁 = 1.
ccdf = complementary cumulative distribution function; CTRW = continuous time random walk.

4.3. Results
Figures 10–12 show the predictions of the CTRW model presented in the previous section compared to
the direct numerical simulations. We consider the CTRW model (26a) conditioned on the initial velocity
PDF p0(v), and for a steady state velocity, this means we set p0(v) = p𝓁(v). In all cases the CTRW model
conditioned on the initial velocity PDF provides a satisfying prediction for the evolution of the breakthrough
behaviors with distance from the inlet plane.

Figure 10 shows the CTRW prediction for network 1 compared to the numerical data. Both CTRW models,
the one conditioned on the initial velocity data and the steady CTRW model, perform similarly well, while
the former predicts better the BTC at distance xc = 25r0. As we can see in Figure 4, the initial velocity PDF
and the steady velocity PDF coincide well down to velocities of v∕ve = 10−3. This is sufficient to render
similar predictions of the BTCs at different control planes.

This behavior is similar for network 2, as shown in Figure 11. Both the conditional and the steady CTRW
models perform equally well because the initial and steady velocity PDFs are very similar; see Figure 4. At
the shortest distance of xc = 25r0, the breakthrough behavior is quite well described by the streamtube
model, see Figure 7, better than either of the two CTRW approaches. This indicates that in this network
particle transport is dominated by very few long fractures, which is not captured by the CTRW models based
on (self-) convolution. However, at long distances (xc = 50r0 and xc = 100r0), the streamtube model fails to
provide good predictions because particles have made several velocity transitions between fracture planes
and the BTC is constructed by convolution. The CTRW model accounts for these transitions and provides
better predictions that the streamtube model.

For network 3, there is a remarkable difference between the predictions at xc = 25r0 based on the condi-
tional and steady CTRW models. The steady CTRW does not capture the breakthrough behavior. This is due
to the difference between the initial and steady state velocity PDFs shown in Figure 4. The initial PDF has a
higher weight at small velocities, and as a consequence, there is a stronger tailing in the conditioned CTRW
and the direct simulations than the predictions provided by the steady CTRW model. At larger distances
then, both CTRW models provide good predictions for the direct numerical data.

5. Conclusion
We have presented an analysis of flow and transport properties in sparse three-dimensional fracture net-
works with fracture sizes that follow a power law distribution. The three networks we consider have the
same fracture intensity values but exhibit different topological structures, which appear to be the domi-
nant control of transport within the networks, due to the different exponents in the power law distribution
of fracture radii. We considered two different average transport models to predict solute breakthrough, a
streamtube model and a Bernoulli CTRW model, both of which provide insights into the flow fields within
the networks.
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The streamtube model provides adequate predictions at short distances in two of the networks but fails in all
cases to predict breakthrough times at the outlet plane. The breakdown of the streamtube predictions with
increasing distance from the inlet plane indicates that particle motion in such fracture networks cannot be
characterized by a constant velocity between the inlet and control plane at which the BTC is detected, as
assumed by the streamtube model. Rather, the structure of the network requires that frequent velocity tran-
sitions be made as particles move through the system. Despite the relatively broad distribution of fracture
radii and relatively small number of independent velocity transitions, the Bernoulli CTRW approach con-
ditioned on the initial velocity distribution and tortuosity of trajectories provides reasonable predictions for
the BTCs at different distances from the control because it accounts for these velocity transitions. Through
the application of the graph-based characterization method and average transport model interpretation we
are able to provide a link between structural properties of the network and observed transport behavior.

For networks 1 and 2 (Figure 7), the streamtube model does a reasonable job predicting breakthrough at
detection planes close to the inlet plane but deteriorates when predicting transport at the outlet. These pre-
dictions corroborate the notion that the inlet plane is well connected to the early detection planes in these
two networks, as identified by the topological investigation in section 2.1. However, for network 3 (Figure 7),
the stochastic convective streamtube models overestimates tailing of the BTCs at all distances from the inlet.
For x1 = 25r0, the early arrival is predicted reasonably well, while for x1 = 50r0 and x1 = 100r0 the
streamtube prediction arrives too early and strongly overestimates the late time tailing. These observations
indicate that particle motion can in general not be characterized by a constant velocity between the inlet
and control planes at which the BTC is detected. Rather, the structure of the network requires that frequent
velocity transitions be made as particles move through the system, as suggested by the preliminary topo-
logical investigations. The variability in the correlation lengths explains the deterioration of the streamtube
approach in section 3.3 for increasing values of 𝛼. The shortest path lengths of the networks (Table 1) provide
a reasonable starting point for the average number of transitions that particles make (section 4.1); parti-
cles in networks with lower shortest path lengths make fewer transitions than particles in networks with
longer paths.

The Bernoulli CTRW model accounts for frequency of these transitions and in turn provides better predic-
tions than the streamtube model. We also consider two variants of the model. The first is conditioned on
the initial velocity, and the second uses a steady state velocity. In all cases the conditioned CTRW model
provides a satisfying prediction for the evolution of the breakthrough behaviors with distance from the inlet
plane (Figures 10 –12). Despite the relatively broad distribution of fracture radii and relatively small num-
ber of independent velocity transitions, the CTRW approach provides reasonable predictions for the BTCs at
different distances from the inlet. We expect the quality of the prediction and the predictability to increase
with increasing distance from the inlet plane, as a result of the increasing number of velocity transitions as
particles pass through the DFN because they must transition between an increasing number of fractures.
This aspect is borne witness by the predictions obtained in network 3, where the highest number of transi-
tions are expected. It is also interesting to note that conditioning on the particle velocities at the inlet plane
is most important for network 3 because the difference between the initial velocity distribution and the
steady velocity distribution is most pronounced for this network. This emphasizes the importance of con-
ditioning on the initial data. At the distances considered here, the breakthrough behavior is influenced by
the local network structure. This nonstationary behavior is captured on one hand by conditioning on the
initial velocity PDF and on the other through distance-dependent tortuosity. Typically, this is a parameter
that is not easily accessible. However, at large distance, it converges to 𝜒∞, which can be determined from
the Eulerian flow properties only.

While these networks do present different topological characteristics, it must be noted that they are only
three networks with a single fracture intensity. Thus, the presented results are limited in that they provide
a first attempt to validate simplified models for flow and transport in complex fracture networks, and fur-
ther validation is still required. Nonetheless, the success and failure of the models provide insight into the
connection between the network structure and the flow properties therein.
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Appendix A: Streamtube Model
The BTC F(t, x1) is obtained by inserting 𝜏(x1, a) = x1𝜒(x1)∕u(a) for the arrival time in the streamtube model
into expression (17) for the BTCs, which gives

F(t, x1) =
1
M ∫

Ωa

dam(a)H[x1𝜒(x1)∕u(a) − t]. (A1)

This expression can be written as

F(t, x1) =

∞

∫
0

dv′H[x1𝜒(x1)∕v′ − t]
⎧⎪⎨⎪⎩

1
M ∫

Ωa

dam(a)𝛿[v′ − u(a)]
⎫⎪⎬⎪⎭ . (A2)

We note that the expression in the curly bracket on the right side is equal to the velocity PDF p0(v) at the
inlet. Thus, from (A2) follows immediately (24).

Appendix B: Boltzmann Equation
The joint PDF (28) of arrival time and velocity can be expanded as

𝑓 (t, v;𝓁 + Δ𝓁) =

∞

∫
0

dv′𝑓 (t − v′∕Δ𝓁, v′;𝓁)p𝓁(v,Δ𝓁|v′), (B1)

where p𝓁(v, 𝛥𝓁|v′ ) is the PDF of v(𝓁 + Δ𝓁) given that is it equal to v′ at 𝓁. For the Bernoulli velocity model
it is (Dentz et al., 2016)

p𝓁(v,Δ𝓁|v′) = 𝛿(v − v′) exp(−Δ𝓁∕𝓁c) +
[
1 − exp(−Δ𝓁∕𝓁c)

]
p𝓁(v). (B2)

Inserting the latter into (B1) gives

𝑓 (t, v;𝓁 + Δ𝓁) =𝑓 (t − Δ𝓁∕v, v;𝓁) exp(−Δ𝓁∕𝓁c)

+
[
1 − exp(−Δ𝓁∕𝓁c)

]
p𝓁(v)

∞

∫
0

dv′𝑓 (t − v′∕Δ𝓁, v′;𝓁). (B3)

Expansion of the right side to linear order in Δ𝓁 gives

𝑓 (t, v;𝓁 + Δ𝓁) = 𝑓 (t, v;𝓁)(1 − Δ𝓁𝜅c) −
Δ𝓁

v
𝜕𝑓 (t, v;𝓁)

𝜕t
+ Δ𝓁𝜅cp𝓁(v)

∞

∫
0

dv′𝑓 (t, v′;𝓁), (B4)

where we set 𝜅c = 1∕𝓁c. The limit 𝛥𝓁 → 0 and isolating the time derivative of f(t, v;𝓁) gives equation (29).

Appendix C: Graph Representation
We adopt a graph representation where vertices in the graph correspond to fractures in and edges correspond
to intersections between fractures. Let F = {fi} for i = 1, … ,N denote a fracture network composed of
n fractures. Every fi ∈ F is assigned a shape, location, and orientation within the domain by sampling
distributions whose parameters are determined by a site characterization Every 𝑓i ∈ R

2 but the network
F ∈ R

3. Let I = {(fi, fj)} be a set of pairs associated with intersections between fractures; if fi ∩ fj ≠ ∅, then
(fi, fj) ∈ I. The number of intersections M = |I| depends on the particular shape, orientation, and geometry
of the set of fractures in the network. We denote the line of intersection between fi and fj as 𝓁(fi, fj). Using
these sets, the topology of a DFN can be defined as the tuple (F, I).

The graph representation of the DFN G(V,E) adopted here is a triple composed of (i) a set of vertices V(G),
(ii) a set of edges E(G), and (iii) a relation that associates two vertices with each edge. For every fi ∈ F, there
is a unique vertex ui ∈ V:

𝜙 ∶ 𝑓i → ui . (C1)
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If two fractures, fi and fj intersect, (fi, fj) ∈ I, then there is an edge in E connecting the corresponding
vertices,

𝜙 ∶ (𝑓i, 𝑓𝑗) ∈ I → ei𝑗 = (ui,u𝑗) , (C2)

where (u, v) ∈ E denotes an edge between vertices u and v. The graph is unweighted; both node and edge
weights are uniform.
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