Avalon: Champagne Computing on a Beer Budget
Extended Abstract

Michael S. Warren
J. Dawvid Moulton

Aric A. Hagberg
David Neal

Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory

John K. Salmon

Center for Advanced Computing Research, California Institute of Technology

{msw,aric,moulton,dneal } @lanl.gov

{johns}@cacr.caltech.edu
http://enls.lanl.gov /avalon/

Abstract

Avalon is a 140 processor Alpha/Linux Be-
owulf cluster constructed entirely from com-
modity personal computer technology and
freely available software. Computational
Physics simulations performed on Avalon
resulted in the award of a 1998 Gordon
Bell price/performance prize for significant
achievement in parallel processing. Avalon
ranked as the 113th fastest computer in the
world on the November 1998 TOP500 list,
obtaining a result of 47.8 Gigaflops on the
parallel Linpack benchmark.

Avalon currently provides over 15,000
node-hours of production computing time per

week, split among about 10 production users.
Obtaining an equivalent amount of comput-
ing through Los Alamos institutional sources
would cost a minimum of $45,000 per week.
The machine also supports code development
for another 50 users. The largest single simu-
lation was performed in April and May 1998
using the SPaSM molecular dynamics code,
which computed a total of 1.12 x 10*® floating
point operations. This simulation is among
the few scientific simulations to have ever in-
volved more than 10 Petaflops of computa-
tion.

The price of hardware and final assembly
labor for Avalon totalled $313,000 dollars.
The monetary cost of the development and

OS software used for the applications men-
tioned above was $0. Perhaps most extraordi-
nary, all of the hardware and software main-
tenance on the machine is performed in the
spare time of four people, averaging less than
10 man-hours of labor per week overall.

1 Introduction

Linux is the primary technology which has
enabled the practical use of parallel comput-
ers built from commodity hardware. Its im-
portance was recognized from the very begin-
ning the Beowulf project [?]. Our experience
first with Loki [?] and now with Avalon has
served as a clear example of the advantages of
Linux, and we are proud to have contributed
to its increasing recognition. A more exten-
sive introduction will be included in the full
version of this paper.

2 Zen and the Art of Be-
owulf

Instruction #1 — Assembly of Beowulf re-
quires great peace of mind.

It is possible to enumerate a set of guide-
lines about how to construct a Beowulf, filled
with details about disks and CPUs and net-
work performance. This, however, misses the
point of what makes these machines different.
What the machine is made of is far less im-
portant than what it is capable of doing, and
one should keep in mind that the capabilities
of a system as complicated as a parallel com-
puter can not easily be determined by simply

looking at its component parts.

2.1 Hardware

Avalon was initially constructed from 70
nodes for a total cost of $152,175. All of
the operating system software (RedHat Linux
5.0), software tools (GNU) and compilers
(eges) used are freely available. The individ-
ual nodes were purchased from Carrera Com-
puters and delivered to Los Alamos on April
10 completely assembled with the operating
system already installed and configured. We
also used four 3Com SuperStack 1T 3900 36-
port fast ethernet switches, with 2 Gigabit
uplink modules added to each one. This pro-
vides 3 Gigabit links on each switch, which
are trunked together and attached to a 3Com
SuperStack IT 9300 12-port Gigabit Ethernet
switch. Overall, this provides a switched net-
work of 144 fast ethernet ports, at a cost of
about $300 per port.

The only labor required to complete assem-
bly of the cluster was unpacking the nodes
from their shipping boxes and the attachment
of power and network cables. This took 28
man-hours of labor, which we have included
in the price at $100/hour. The machine was
operational on April 13, three days after de-
livery. Avalon was doubled in size to 140
nodes on September 10, and a memory up-
grade also doubled the memory per node to
256 Mbytes. The final configuration of the
machine is found in Table 1.

The machine has been more reliable than
even our initially optimistic expectations.
During a three month period during the sum-
mer of 1998 not a single hardware compo-

’ Qty. ‘ Price ‘ Ext. ‘ Description

140 | 1701 | 238140 | DEC Alpha 164LX 533 MHz 21164A, with 2x128Mb SDRAM DIMM
ECC memory (256 Mbyte/node), Quantum 3240 Mbyte IDE
Hard Drive, Kingston 100 Mb Fast Ethernet PCI Card, cables ,
assembly, Linux install, 3 year parts/labor warranty
70 285 | 19950 | 128 Mb Memory upgrade for initial 70 nodes
4| 6027 | 24108 | 3Com SuperStack IT 3900, 36-port Fast Ethernet
8 968 7744 | Gigabit uplink modules for 3900s
1] 10046 | 10046 | 3Com SuperStack II 9300, 12-port Gigabit Ethernet
5 | 1055 5275 | Cyclades Cyclom 32-YeP serial concentrators
140 10 1400 | Serial cables (20 ft)
7 117 819 | Shelving
56 100 5600 | Final assembly labor
Total $313,082 $2236 per node 1.066 Gflops peak per node

Table 1: Avalon architecture and price.

nent was replaced on any of the nodes. The
downtime of the machine has been completely
dominated by failures which were beyond our
control. An unneeded upgrade of the air con-
ditioning units in our machine room (which
then failed) required us to shut down much
of the machine on several occasions for sev-
eral days. The full version of this paper will
include detailed failure statistics.

We estimate that Avalon consumes about
18 kilowatts of power while under load. The
cost of electricity for the machine works out
to about $15k per year. With space charges
at Los Alamos of about $50 per square foot,
the charge for the space to put the machine
adds an additional $6k per year. Scaling the
purchase price by Moore’s Law, when the ma-
chine is about 6 years old, it will cost more
per year for power and space than the value

of the computation produced by the machine.
This puts a clear upper limit on the use-
ful lifetime of the machine. More expensive
commercial machines do not reach this limit,
since they start out being 10 times as expen-
sive.

2.2 OS install

OS install on an Alpha is somewhat different
than Intel-based machines. One needs lin-
load.exe, milo and a kernel. All three will
fit on a single floppy, but milo and kernels
are specific to each particular Alpha mother-
board.

We use two methods of OS install. The
first is a “bootstrap” method, where one
starts from scratch with a clean disk and a
RedHat CD-ROM or ftp image. The sec-
ond is “cloning,” where one takes a current

disk image and duplicates it to a new disk.
The bootstrap is clearly required initially. We
considered using a bootstrap method exclu-
sively, but found that cloning had advantages
such as keeping new nodes exactly consistent
with software updates that have already been
performed on the working disk images.

The RedHat “kickstart” method is the
usual method of unattended installation, but
we were unfamiliar with its control syntax,
and it was not flexible enough to partition
the disks the way we wanted them. The
Avalon node disks each contain 7 partitions.
A dos /boot partition for linload, milo and
the kernel, a swap partition, /tmp, /var, /usr,
/home and /. The rationale behind many
partitions is primarily to insure that corrup-
tion in one partition does not affect others,
and to allow OS upgrades to be performed
without affecting user data in /home.

Rather than use kickstart, we created a
small 10 Mbyte nfsroot partition on a server
with yard. We used a kernel with nfsroot
support to boot using this partition, and ran
a small shell script which partitioned the hard
drive, and installed the desired RPM pack-
ages directly. One could use a ramdisk-based
filesystem to bootstrap the OS install with-
out an NFS server, but the limited space pro-
vided by a floppy makes things more difficult
than necessary. One subtlety in this process
is that RPMS can not be installed all at once
(a bug in rpm?). A bit of trial and error deter-
mined that two rpm -i calls would work, as
long as the first one installed the appropriate
20 packages.

The cloning procedure simply requires a
short shell script which makes disk partitions,

and uses tar to copy the data off of another
disk. The other disk can be on the same ma-
chine, or on another machine on the network
(in this case one must provide some mech-
anism to boot the machine with the empty
disk in it). The final task of the script is to
modify the two network configuration files in
order to give the new disk the correct iden-
tity.

3 Applications

The first major simulation performed by
Avalon was a 60 million particle molecular
dynamics (MD) simulation of shock-induced
plasticity using the SPaSM MD code [?].
This simulation ran for a total of 332 hours on
Avalon, computing a total of 1.12 x 106 float-
ing point operations. Also for the Gordon
Bell prize entry, Avalon performed a gravita-
tional treecode N-body simulation of galaxy
formation using 9.75 million particles, which
sustained an average of 6.78 Gflops over a
26 hour period. This simulation is exactly
the same as that which won a Gordon Bell
price/performance prize last year on the Loki
cluster [?], at a total performance 7.7 times
that of Loki, and a price/performance 2.6
times better than Loki. Both of these sim-
ulations are reported in more detail in [?].
During the shakedown of the initial sys-
tem, Avalon made the largest contribution
of any group in the world to the solution of
the Certicom Cryptographic Challenge, orga-
nized by Robert J. Harley of the Institut Na-
tional de Recherche en Informatique et Au-
tomatique (INRIA), France. The solution to

the ECC2K-95 problem was found after 21.6
trillion elliptic curve operations, carried out
in 25 days by 47 people. The $4000 prize for
finding the solution was donated to the Free
Software Foundation.

We will report on the other major appli-
cations currently running on Avalon (Non-
linear Dynamics, Partial Differential Equa-
tions, Phase Transitions in the early Uni-
verse, Eigenvalue solvers, Monte Carlo sim-
ulations of 3d spin glasses, 3d supernova sim-
ulations) in the full version of this paper.

4 Software

4.1 Prsh

Prsh is a script we have developed which im-
plements a ”parallel” rsh. Prsh runs a com-
mand on a list of remote processors with op-
tional timeouts, output flushing, status re-
ports, etc. It is implemented with about
200 lines of perl. It has turned out to be
a tremendously powerful and flexible way to
extend the usual UNIX command-line inter-
face across a parallel machine. A typical prsh
command would be:

prsh —— uptime
This shows the uptime on nodes
defined by the environment variable

PRSH_NODES. The last argument to prsh
can be any valid command you would
ordinarily give on the command-line.
ls, cp, shutdown, zap, date, etc.

A more explicit way to specify nodes may
also be used:

prsh a00 a0l a02 a03 -- uptime

Typing machine names quickly becomes
tiresome on a large machine, but another
small perl script comes to the rescue.
nseq simply creates a string of node
names. The example above is equivalent to

prsh ‘nseq O 3° -- uptime, which is not
much shorter than the explicit command,
but prsh ‘nseq 0 140¢ -- shutdown -h

certainly is.

Prsh calls rsh asynchronously, so all com-
mands execute in parallel. The prsh com-
mand in practice feels very responsive, with
commands running across 140 Avalon proces-
sors completing in less than 2 seconds. prsh
also can be told to use ssh as an option, so
all system maintenance commands are per-
formed using ssh-agent authentication and
prsh from the front-end.

4.2 SWAMPI

Since about 1990 we have maintained a small
message passing library which we have used
to run our parallel codes on networks of work-
stations. The library was initially imple-
mented with UDP, since UDP performance
on the machines and operating systems at
that time was much superior to TCP perfor-
mance. The library implemented only about
10 basic communication functions, but those
were sufficient to run our parallel codes, since
we believed (or soon discovered) that depend-
ing on anything beyond the basics would not
run reliably on most parallel machines.
With the discovery that Linux TCP band-
width over fast ethernet was equivalent to
UDP performance, we were able to substan-
tially simplify our simple message passing li-

brary (since we no longer had to handle mes-
sage sequencing and retries ourselves). While
doing this we also took the opportunity to
align the code more closely with the MPI
standard. This rewrite was done during a
couple of weeks in early 1997, and was the
message-passing library used by our codes al-
most exclusively Loki. This library (named
SWAMPI) is implemented in about 2000 lines
of code, and implements the 24 most com-
monly used MPI functions. This may be
contrasted with about 100,000 lines of code
in the Ohio State LAM implementation [?],
and 250,000 in the MPICH distribution [7]
(of which 40k lines are examples, and 100k
lines are device specific). Needless to say, it
is considerably easier to understand what is
happening in 2000 lines of our own code vs
100,000 of somebody else’s.

SWAMPI was used on Avalon from the
beginning, showing increased reliability and
performance over MPICH and LAM. During
the few days we had to optimize the Paral-
lel Linpack benchmark, we were able to insert
SWAMPI at the core level of MPICH and im-
prove overall performance by over 20%. We
were unable to use SWAMPI alone, because
it did not provide the MPI functionality re-
quired by the numerous abstraction layers in
the SCALAPACK and BLACS code which
implemented the parallel Linpack algorithm.

We are now re-examining the choice of
TCP, since it appears that using a connec-
tion oriented protocol results in scaling diffi-
culties when using more than 100 processors
at once. Particularly, the select() system call
does not scale well when there are many open
file descriptors. What would be ideal would

be a connectionless yet reliable protocol.

5 Some Perspective

Avalon ranks at #113 on the TOP500 super-
computers list [?], at 48,600 Mflops. TOP500
is based on Parallel Linpack performance [?].
Avalon peak performance is 149,400 Mflops,
and Avalon would rank around #50 in the
world in a list based on peak performance.

To put Avalon’s speed in perspective, only
12 countries in the world had machines faster
than Avalon in November, 1997. Avalon
is almost twice as fast as the fastest ma-
chine in Central or South America. While
Avalon is thirty times slower than the fastest
computer in the USA, the rapid growth of
Linux in countries such as Mexico will likely
lead to dramatic changes in the supercom-
puting landscape in those nations. Another
view of the same data is that only 10 com-
mercial enterprises in the world have ever
built machines faster than Avalon. The two
fastest machines listed under Compaq (for-
merly DEC) in the TOP500 list are actually
Linux clusters designed at Los Alamos and
Sandia National Labs.

Why are commercial machines so expen-
sive? It is certainly not because supercom-
puter companies are charging much more
than they should, as is borne out by the
long list of vendors which have declared
bankruptcy. Are Beowulf machines filling a
small niche, or is something deeper involved?
It is at least possible that the answer lies en-
tirely in software. It may cost 10 times as
much as developing the hardware to develop

a one-of-a-kind OS which attempts to be all
things to all supercomputer users.

6 Outstanding Problems

While Avalon performs adequately, there are
of course many areas in which improvements
would be valuable [?]. The final version of
this paper will include discussion in the areas
of running DEC Unix binaries under Linux
legally, queuing, problems with very large
(greater than 50 Gbyte) filesystems and gi-
gabit ethernet.

7 Appendix: Avalon Timeline

1996
16 May — Proposal for LANL Research funds to build a cluster turned down
13 Aug — “Commodity Computing” memo to T-Division Director received warmly
Sep — Loki constructed, 16 processor Pentium Pro cluster for $63,000
1997
Aug — Spot prices show Loki could now be built for less than $25,000
20 Nov — Loki wins 1997 Gordon Bell Price/Performance Prize
28 Nov — Loki appears on the cover of Linux Journal
12 Dec — “Loki II” memo proposes a larger cluster to T-Division Director
1998
14 Jan — linux.lanl.gov comes on-line
16 Jan — T-Division director Richard Slansky unexpectedly leaves us
2 Feb — Meeting at CNLS to discuss building Alpha Cluster of about 64 nodes
3 Feb — Preliminary DEC Alpha quotes from DCG and Aspen
4 Feb — Two SX systems ordered from DCG for evaluation
10 Feb — Preliminary specs to send to BUS for official quotes from 6 vendors
10 Mar — 50 PC164 LXs ordred from Carerra
17 Mar — 20 more ordered
23 Mar — Avalon chosen as a name
30 Mar — Linpack: .2 GFlops (on Alpha PX164SX node)
6 Apr — New libdgemm from Goto
6 Apr — Linpack: .4 Gflops (on Alpha PX164SX node)
8 Apr — One SX sacrificed for serial controller
8 Apr — Confirmed April 15 as TOP500 deadline
10 Apr — First shipment form Carerra arrives at CNLS (70 nodes)
10 Apr — Discover Etherpowerll cards don’t work with new board (rev C0)
10 Apr — Try Kingston cards, work, order cards for replacement
10 Apr — 8 machines up and running with borrowed Kingston cards
11 Apr — Wiring all nodes, last gasp to get Etherpower IIs to work
11 Apr — Linpack: 2.1 Gflops (4x2) 9600x9600
13 Apr — Linpack: 11.2 Gflops (8x8)
13 Apr — Linpack: 13.7 Gflops (4x16)
14 Apr — 2.1.96 kernel, All 70 nodes working
14 Apr — Linpack: 15.2 GFlops (5x14)
14 Apr — Linpack: 16.5 GFlops (4x17)
15 Apr — Linpack: 16.8 GFlops (4x17) 30464x30464 matrix, submitted to Top500

8

15 Apr — Computations for Gordon Bell prize started

15 Apr — cnls.lanl.gov/avalon up

15 Apr — Linpack: 19.3 GFlops (4x17) with swampi, amended numbers to Top500

16 Apr — Celebrate with beers at one of the only two bars in Los Alamos

17 Apr — avalon@lanl.gov list formed

27 Apr — avalon appears on Linpack list

30 Apr — Gordon Bell entry complete, computations and paper

30 Apr — News: Slashdot

1 May — Avalon begins production mode

1 May — Avalon FAQ

5 May — Avalon starts crunching Certicom challenge in background

21 May — Avalon wins $500 for ECC2K-95 crypto challange, $4000 to FSF

27 May — 20.0 Gflops with 2.1.103 kernel

18 Jun — Avalon makes #315 on Top500 list. First Linux cluster to make list.

18 Jun — LANL press release ”Los Alamos Mail-order Supercomputer Among World’s
Fastest”

25 Jun — Avalon has first node failure in 47 days.

1 Jul — Money secured to upgrade to 140 nodes

5 Jul — ”Do-It-Yourself Supercomputers” in Wired

10 Jul — News: PC World Today, CNN, Slashdot

17 Jul — 20 more nodes ordered from Carerra

28 Jul — Avalon in Forbes article ”For the Love of Hacking”

31 Jul — First hint of AC troubles: water on floor

5 Aug — Avalon has 35 users

21 Aug — AC not working, apparently fixed by power cycling unit

21 Aug — 20 nodes arrive from Carrera

1 Sep — 50 more units shipped from CA

9 Sep — power installed for new nodes, based on work order issued in March

9 Sep — 2.1.120 kernel on 90 nodes

10 Sep — 50 nodes arrive

11 Sep — All 140 nodes running

11 Sep — Linpack: 34.5 Gflops (5x28) (some nodes still 128M)

11 Sep — Memory arrives, all nodes upgraded to 256MB or higher

12 Sep — Bad memory discovered in a few nodes

12 Sep — 1GB nodes don’t work, downgrade to 512MB

12 Sep — Linpack: 47.7 Gflops (5x28), submitted to Top500

15 Sep — Avalon upgrade complete, 140 nodes 36GB memory

15 Sep — Production runs restart

15 Sep — 30 GFlops on MD code, 18GFlops on treecode,

15 Sep — amended Gordon Bell entry

17 Sep — Bad SCSI disk in front end wastes lots of time

24 Sep — Avalon down for air conditioner replacement in machine room

24 Sep — Nodes moved to allow room for AC units to get through

24 Sep — Nodes covered with plastic to protect from construction debris

6 Oct — Avalon moved again

6 Oct — One AC unit working, not enough to cool entire machine room

13 Oct — AC functioning

13 Oct — 140 nodes up with 2.1.125 kernel

13 Oct — 250GB RAID online

13 Oct — Linpack: 48.6 GFlops (5x28)

20 Oct — New AC unit failing, most of Avalon down

21 Oct — AC ’fixed’, Avalon on

22 Oct — AC not working, most of Avalon off

29 Oct — AC ’fixed’, part replaced

2 Nov — Avalon all on

3 Nov — Slashdot again

5 Nov — Ranked #114 on Top500 list

12 Nov — Avalon receives Gordon Bell prize for price/performance

26 Nov — Ranked #113 on amended Top500 list

15 Dec — Avalon in Science Magazine ”"From Army of Hackers, an Upstart Operating
System”

17 Dec — AC not working

18 Dec — Half of Avalon shut down due to AC problems

19 Dec — AC ’fixed’,

21 Dec — Avalon to remain half off during holiday closure because of AC problems
1999

4 Jan — All nodes back on

5 Jan — Development nodes upgraded to kernel 2.2.0-pre4

8 Jan — AC not working, all nodes remain on

12 Jan — AC ’fixed’

15 Jan — Extended Abstract submitted for Linux Expo, world domination to follow

10

